Loading…

Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity

The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO 2 , 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to thr...

Full description

Saved in:
Bibliographic Details
Published in:Contributions to mineralogy and petrology 2012-08, Vol.164 (2), p.317-339
Main Authors: Krawczynski, Michael J., Grove, Timothy L., Behrens, Harald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23
cites cdi_FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23
container_end_page 339
container_issue 2
container_start_page 317
container_title Contributions to mineralogy and petrology
container_volume 164
creator Krawczynski, Michael J.
Grove, Timothy L.
Behrens, Harald
description The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO 2 , 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO 2 , 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003 ) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H 2 O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H 2 O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H 2 O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H 2 O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H 2 O pressure ( ), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and : This barometer gives a minimum recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H 2 O pressures (500–900 MPa) and high pre-eruptive magmatic H 2 O contents (10–14 wt% H 2 O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil ( 2010 ).
doi_str_mv 10.1007/s00410-012-0740-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1030717216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726550811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssW1gHLtxwq6qgCJV6gbWluOOQ6rmge2g9u9xFBZsWM2M5t47mkPIHYMHBiAfPYBgkABLE5ACkuMZmTHB41Rk8pzMAOJWFkVxSa6830Oc82IxI7hs-s-67A5IfdBlfajDidYt7V3d1KH-RqqdoY2uGu2fKFqLJnjaWRqw6dHpMDic03W6paZrA7ZhTnW7o93xVGFL7VBpExNvyIXVB4-3v_WafLw8v6_WyWb7-rZabhLDWRqSHLjQNrVGZhxyw6yQZQGSWyyBLSTHEk0peJ5xJuVubJkwpuRSiEIKm_Jrcj_l9q77GtAHte8G18aTigEHyWTKsqhik8q4znuHVo3faneKIjXSVBNNFWmqkaY6Rk86eXzUthW6v8n_mX4A0B130A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030717216</pqid></control><display><type>article</type><title>Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity</title><source>Springer Link</source><creator>Krawczynski, Michael J. ; Grove, Timothy L. ; Behrens, Harald</creator><creatorcontrib>Krawczynski, Michael J. ; Grove, Timothy L. ; Behrens, Harald</creatorcontrib><description>The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO 2 , 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO 2 , 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003 ) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H 2 O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H 2 O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H 2 O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H 2 O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H 2 O pressure ( ), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and : This barometer gives a minimum recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H 2 O pressures (500–900 MPa) and high pre-eruptive magmatic H 2 O contents (10–14 wt% H 2 O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil ( 2010 ).</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-012-0740-x</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Barometers ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Experimental data ; Geochemistry ; Geology ; Geophysics ; Hygrometry ; Magma ; Mineral Resources ; Mineralogy ; Nickel ; Original Paper ; Petrology ; Volcanic cones ; Volcanology</subject><ispartof>Contributions to mineralogy and petrology, 2012-08, Vol.164 (2), p.317-339</ispartof><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23</citedby><cites>FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krawczynski, Michael J.</creatorcontrib><creatorcontrib>Grove, Timothy L.</creatorcontrib><creatorcontrib>Behrens, Harald</creatorcontrib><title>Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO 2 , 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO 2 , 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003 ) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H 2 O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H 2 O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H 2 O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H 2 O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H 2 O pressure ( ), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and : This barometer gives a minimum recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H 2 O pressures (500–900 MPa) and high pre-eruptive magmatic H 2 O contents (10–14 wt% H 2 O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil ( 2010 ).</description><subject>Barometers</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Experimental data</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Hygrometry</subject><subject>Magma</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Nickel</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Volcanic cones</subject><subject>Volcanology</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuXxAewssW1gHLtxwq6qgCJV6gbWluOOQ6rmge2g9u9xFBZsWM2M5t47mkPIHYMHBiAfPYBgkABLE5ACkuMZmTHB41Rk8pzMAOJWFkVxSa6830Oc82IxI7hs-s-67A5IfdBlfajDidYt7V3d1KH-RqqdoY2uGu2fKFqLJnjaWRqw6dHpMDic03W6paZrA7ZhTnW7o93xVGFL7VBpExNvyIXVB4-3v_WafLw8v6_WyWb7-rZabhLDWRqSHLjQNrVGZhxyw6yQZQGSWyyBLSTHEk0peJ5xJuVubJkwpuRSiEIKm_Jrcj_l9q77GtAHte8G18aTigEHyWTKsqhik8q4znuHVo3faneKIjXSVBNNFWmqkaY6Rk86eXzUthW6v8n_mX4A0B130A</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Krawczynski, Michael J.</creator><creator>Grove, Timothy L.</creator><creator>Behrens, Harald</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20120801</creationdate><title>Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity</title><author>Krawczynski, Michael J. ; Grove, Timothy L. ; Behrens, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Barometers</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Experimental data</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Hygrometry</topic><topic>Magma</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Nickel</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Volcanic cones</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krawczynski, Michael J.</creatorcontrib><creatorcontrib>Grove, Timothy L.</creatorcontrib><creatorcontrib>Behrens, Harald</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krawczynski, Michael J.</au><au>Grove, Timothy L.</au><au>Behrens, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>164</volume><issue>2</issue><spage>317</spage><epage>339</epage><pages>317-339</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO 2 , 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO 2 , 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003 ) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H 2 O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H 2 O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H 2 O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H 2 O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H 2 O pressure ( ), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and : This barometer gives a minimum recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H 2 O pressures (500–900 MPa) and high pre-eruptive magmatic H 2 O contents (10–14 wt% H 2 O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil ( 2010 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00410-012-0740-x</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2012-08, Vol.164 (2), p.317-339
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_1030717216
source Springer Link
subjects Barometers
Crystallization
Earth and Environmental Science
Earth Sciences
Experimental data
Geochemistry
Geology
Geophysics
Hygrometry
Magma
Mineral Resources
Mineralogy
Nickel
Original Paper
Petrology
Volcanic cones
Volcanology
title Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amphibole%20stability%20in%20primitive%20arc%20magmas:%20effects%20of%20temperature,%20H2O%20content,%20and%20oxygen%20fugacity&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Krawczynski,%20Michael%20J.&rft.date=2012-08-01&rft.volume=164&rft.issue=2&rft.spage=317&rft.epage=339&rft.pages=317-339&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-012-0740-x&rft_dat=%3Cproquest_cross%3E2726550811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-8034af2fc76308c1f47b9073feb01573ebecb43863177dcb4314ccb3744974f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030717216&rft_id=info:pmid/&rfr_iscdi=true