Loading…
COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS
Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this s...
Saved in:
Published in: | Applied artificial intelligence 2012-08, Vol.26 (7), p.662-672 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13 |
container_end_page | 672 |
container_issue | 7 |
container_start_page | 662 |
container_title | Applied artificial intelligence |
container_volume | 26 |
creator | Sahin, Arzu Sencan Köse, Ismail Ilke Selbas, Resat |
description | Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated. |
doi_str_mv | 10.1080/08839514.2012.701427 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1033201123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734641061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</originalsourceid><addsrcrecordid>eNp9kUtLw0AUhQdRsD7-gYuAGzep80gyMysJ7USDbVMmqVI3w5BOoCVt6kyL-O-dWt24cHXgnu8eLvcAcINgH0EG7yFjhMco6mOIcJ9CFGF6Anreo2ESR_Ep6B2Q8MCcgwvnVhBCRCnqgdWgGE9TmVb5iwjSSTqal3kZFFkwETOZjrxUr4V89tbwe1SE2eztbR6U87IS4yArZFA9CTkuhvNJOs4HwVQWUyGrXHynSJHJ_FHIdFKVV-Cs0a0z1z96CWaZqAZP4ah4zAfpKKxJwnZhxBkimiww18zwhCJNITGRxrjWCNEkwk2C69g0MWaQ-wlMFmzBa244ZbhB5BLcHXO3tnvfG7dT66WrTdvqjen2TiGfGSWME-rR2z_oqtvbjb9OIUiIfyfCxFPRkapt55w1jdra5VrbTw-pQwHqtwB1KEAdC_BrD8e15abp7Fp_dLZdqJ3-bDvbWL2pl06RfxO-ALy8gZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033201123</pqid></control><display><type>article</type><title>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><creator>Sahin, Arzu Sencan ; Köse, Ismail Ilke ; Selbas, Resat</creator><creatorcontrib>Sahin, Arzu Sencan ; Köse, Ismail Ilke ; Selbas, Resat</creatorcontrib><description>Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2012.701427</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Artificial neural networks ; Comparative analysis ; Computer simulation ; Entropy ; Fuzzy logic ; Learning theory ; Neural networks ; Refrigerants ; Refrigeration ; Simulation ; Tables ; Thermodynamic properties ; Thermodynamics</subject><ispartof>Applied artificial intelligence, 2012-08, Vol.26 (7), p.662-672</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor & Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</citedby><cites>FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sahin, Arzu Sencan</creatorcontrib><creatorcontrib>Köse, Ismail Ilke</creatorcontrib><creatorcontrib>Selbas, Resat</creatorcontrib><title>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</title><title>Applied artificial intelligence</title><description>Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.</description><subject>Artificial neural networks</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Entropy</subject><subject>Fuzzy logic</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Refrigerants</subject><subject>Refrigeration</subject><subject>Simulation</subject><subject>Tables</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLw0AUhQdRsD7-gYuAGzep80gyMysJ7USDbVMmqVI3w5BOoCVt6kyL-O-dWt24cHXgnu8eLvcAcINgH0EG7yFjhMco6mOIcJ9CFGF6Anreo2ESR_Ep6B2Q8MCcgwvnVhBCRCnqgdWgGE9TmVb5iwjSSTqal3kZFFkwETOZjrxUr4V89tbwe1SE2eztbR6U87IS4yArZFA9CTkuhvNJOs4HwVQWUyGrXHynSJHJ_FHIdFKVV-Cs0a0z1z96CWaZqAZP4ah4zAfpKKxJwnZhxBkimiww18zwhCJNITGRxrjWCNEkwk2C69g0MWaQ-wlMFmzBa244ZbhB5BLcHXO3tnvfG7dT66WrTdvqjen2TiGfGSWME-rR2z_oqtvbjb9OIUiIfyfCxFPRkapt55w1jdra5VrbTw-pQwHqtwB1KEAdC_BrD8e15abp7Fp_dLZdqJ3-bDvbWL2pl06RfxO-ALy8gZA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Sahin, Arzu Sencan</creator><creator>Köse, Ismail Ilke</creator><creator>Selbas, Resat</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120801</creationdate><title>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</title><author>Sahin, Arzu Sencan ; Köse, Ismail Ilke ; Selbas, Resat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Entropy</topic><topic>Fuzzy logic</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Refrigerants</topic><topic>Refrigeration</topic><topic>Simulation</topic><topic>Tables</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Arzu Sencan</creatorcontrib><creatorcontrib>Köse, Ismail Ilke</creatorcontrib><creatorcontrib>Selbas, Resat</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahin, Arzu Sencan</au><au>Köse, Ismail Ilke</au><au>Selbas, Resat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</atitle><jtitle>Applied artificial intelligence</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>26</volume><issue>7</issue><spage>662</spage><epage>672</epage><pages>662-672</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/08839514.2012.701427</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-9514 |
ispartof | Applied artificial intelligence, 2012-08, Vol.26 (7), p.662-672 |
issn | 0883-9514 1087-6545 |
language | eng |
recordid | cdi_proquest_journals_1033201123 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】 |
subjects | Artificial neural networks Comparative analysis Computer simulation Entropy Fuzzy logic Learning theory Neural networks Refrigerants Refrigeration Simulation Tables Thermodynamic properties Thermodynamics |
title | COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPARATIVE%20ANALYSIS%20OF%20NEURAL%20NETWORK%20AND%20NEURO-FUZZY%20SYSTEM%20FOR%20THERMODYNAMIC%20PROPERTIES%20OF%20REFRIGERANTS&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Sahin,%20Arzu%20Sencan&rft.date=2012-08-01&rft.volume=26&rft.issue=7&rft.spage=662&rft.epage=672&rft.pages=662-672&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2012.701427&rft_dat=%3Cproquest_cross%3E2734641061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1033201123&rft_id=info:pmid/&rfr_iscdi=true |