Loading…

COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS

Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this s...

Full description

Saved in:
Bibliographic Details
Published in:Applied artificial intelligence 2012-08, Vol.26 (7), p.662-672
Main Authors: Sahin, Arzu Sencan, Köse, Ismail Ilke, Selbas, Resat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13
cites cdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13
container_end_page 672
container_issue 7
container_start_page 662
container_title Applied artificial intelligence
container_volume 26
creator Sahin, Arzu Sencan
Köse, Ismail Ilke
Selbas, Resat
description Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.
doi_str_mv 10.1080/08839514.2012.701427
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1033201123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734641061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</originalsourceid><addsrcrecordid>eNp9kUtLw0AUhQdRsD7-gYuAGzep80gyMysJ7USDbVMmqVI3w5BOoCVt6kyL-O-dWt24cHXgnu8eLvcAcINgH0EG7yFjhMco6mOIcJ9CFGF6Anreo2ESR_Ep6B2Q8MCcgwvnVhBCRCnqgdWgGE9TmVb5iwjSSTqal3kZFFkwETOZjrxUr4V89tbwe1SE2eztbR6U87IS4yArZFA9CTkuhvNJOs4HwVQWUyGrXHynSJHJ_FHIdFKVV-Cs0a0z1z96CWaZqAZP4ah4zAfpKKxJwnZhxBkimiww18zwhCJNITGRxrjWCNEkwk2C69g0MWaQ-wlMFmzBa244ZbhB5BLcHXO3tnvfG7dT66WrTdvqjen2TiGfGSWME-rR2z_oqtvbjb9OIUiIfyfCxFPRkapt55w1jdra5VrbTw-pQwHqtwB1KEAdC_BrD8e15abp7Fp_dLZdqJ3-bDvbWL2pl06RfxO-ALy8gZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033201123</pqid></control><display><type>article</type><title>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><creator>Sahin, Arzu Sencan ; Köse, Ismail Ilke ; Selbas, Resat</creator><creatorcontrib>Sahin, Arzu Sencan ; Köse, Ismail Ilke ; Selbas, Resat</creatorcontrib><description>Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2012.701427</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Artificial neural networks ; Comparative analysis ; Computer simulation ; Entropy ; Fuzzy logic ; Learning theory ; Neural networks ; Refrigerants ; Refrigeration ; Simulation ; Tables ; Thermodynamic properties ; Thermodynamics</subject><ispartof>Applied artificial intelligence, 2012-08, Vol.26 (7), p.662-672</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</citedby><cites>FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sahin, Arzu Sencan</creatorcontrib><creatorcontrib>Köse, Ismail Ilke</creatorcontrib><creatorcontrib>Selbas, Resat</creatorcontrib><title>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</title><title>Applied artificial intelligence</title><description>Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.</description><subject>Artificial neural networks</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Entropy</subject><subject>Fuzzy logic</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Refrigerants</subject><subject>Refrigeration</subject><subject>Simulation</subject><subject>Tables</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLw0AUhQdRsD7-gYuAGzep80gyMysJ7USDbVMmqVI3w5BOoCVt6kyL-O-dWt24cHXgnu8eLvcAcINgH0EG7yFjhMco6mOIcJ9CFGF6Anreo2ESR_Ep6B2Q8MCcgwvnVhBCRCnqgdWgGE9TmVb5iwjSSTqal3kZFFkwETOZjrxUr4V89tbwe1SE2eztbR6U87IS4yArZFA9CTkuhvNJOs4HwVQWUyGrXHynSJHJ_FHIdFKVV-Cs0a0z1z96CWaZqAZP4ah4zAfpKKxJwnZhxBkimiww18zwhCJNITGRxrjWCNEkwk2C69g0MWaQ-wlMFmzBa244ZbhB5BLcHXO3tnvfG7dT66WrTdvqjen2TiGfGSWME-rR2z_oqtvbjb9OIUiIfyfCxFPRkapt55w1jdra5VrbTw-pQwHqtwB1KEAdC_BrD8e15abp7Fp_dLZdqJ3-bDvbWL2pl06RfxO-ALy8gZA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Sahin, Arzu Sencan</creator><creator>Köse, Ismail Ilke</creator><creator>Selbas, Resat</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120801</creationdate><title>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</title><author>Sahin, Arzu Sencan ; Köse, Ismail Ilke ; Selbas, Resat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Entropy</topic><topic>Fuzzy logic</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Refrigerants</topic><topic>Refrigeration</topic><topic>Simulation</topic><topic>Tables</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Arzu Sencan</creatorcontrib><creatorcontrib>Köse, Ismail Ilke</creatorcontrib><creatorcontrib>Selbas, Resat</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahin, Arzu Sencan</au><au>Köse, Ismail Ilke</au><au>Selbas, Resat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS</atitle><jtitle>Applied artificial intelligence</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>26</volume><issue>7</issue><spage>662</spage><epage>672</epage><pages>662-672</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>Fast and simple determination of the thermodynamic properties of refrigerants is very important for analysis of vapor compression refrigeration systems. Although tables are available for refrigerants, limited data of tables are not useful in the simulation of refrigeration systems. The aim of this study is to determine the thermodynamic properties such as enthalpy, entropy, specific volume of the R413A, R417A, R422D, and R423A by means of the artificial neural networks (ANN) and adaptive neuro-fuzzy (ANFIS) system. The results of the ANN are compared with the ANFIS, in which the same data sets are used. The ANFIS model is slightly better than ANN. Therefore, instead of limited data as found in the literature, thermodynamic properties for every temperature and pressure value with the ANFIS are easily estimated.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/08839514.2012.701427</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-9514
ispartof Applied artificial intelligence, 2012-08, Vol.26 (7), p.662-672
issn 0883-9514
1087-6545
language eng
recordid cdi_proquest_journals_1033201123
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】
subjects Artificial neural networks
Comparative analysis
Computer simulation
Entropy
Fuzzy logic
Learning theory
Neural networks
Refrigerants
Refrigeration
Simulation
Tables
Thermodynamic properties
Thermodynamics
title COMPARATIVE ANALYSIS OF NEURAL NETWORK AND NEURO-FUZZY SYSTEM FOR THERMODYNAMIC PROPERTIES OF REFRIGERANTS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPARATIVE%20ANALYSIS%20OF%20NEURAL%20NETWORK%20AND%20NEURO-FUZZY%20SYSTEM%20FOR%20THERMODYNAMIC%20PROPERTIES%20OF%20REFRIGERANTS&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Sahin,%20Arzu%20Sencan&rft.date=2012-08-01&rft.volume=26&rft.issue=7&rft.spage=662&rft.epage=672&rft.pages=662-672&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2012.701427&rft_dat=%3Cproquest_cross%3E2734641061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-49813a3d29a8e9671a703e4a22ca117642f62c5ef5280911706d8d9c9e9782f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1033201123&rft_id=info:pmid/&rfr_iscdi=true