Loading…

SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES

In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on R d , such as radial basis functions, to a smooth, compact embedded submanifold M C R d with no boundary. For...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2012-01, Vol.50 (3), p.1753-1776
Main Authors: FUSELIER, EDWARD, WRIGHT, GRADY B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43
cites cdi_FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43
container_end_page 1776
container_issue 3
container_start_page 1753
container_title SIAM journal on numerical analysis
container_volume 50
creator FUSELIER, EDWARD
WRIGHT, GRADY B.
description In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on R d , such as radial basis functions, to a smooth, compact embedded submanifold M C R d with no boundary. For restricted kernels having finite smoothness, we provide a complete characterization of the native space on M. After this and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem for smooth and nonsmooth kernels. In the case of nonsmooth kernels, we provide error estimates for target functions too rough to be within the native space of the kernel. Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R³ and a two-dimensional torus.
doi_str_mv 10.1137/110821846
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1037526435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41582965</jstor_id><sourcerecordid>41582965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKcP_gAh4JMP1dykSVvfujbTYNeMNpuPpd1ScKid7Qb6741MBhcuh_Pde-AgdA3kHoAFDwAkpBD64gSNgETcCyAgp2hECBMe-DQ6RxfDsCFOh8BG6LtMYmNkIVOcxibGKndirrPYKJ1jN3I2kWnq7HIxmcW5muosLfGrMs-4kKUpVGKcOdelMmopcSqnKldG4hdZ5DIrH3GpJzqTSyyLQhfYnahZbGR5ic7a-n2wV_97jBZTaZJnL9NPKokzb8XA33l07VsKTNC2qWuxrkMrghbq0AdBLK9bDquooZaH64hTHrVhA5ysGyEst6RufTZGt4e_27772tthV226ff_pIisgLOBU-Iw76u5ArfpuGHrbVtv-7aPufxxU_RVbHYt17M2B3Qy7rj-CPvCQRoKzX6zSaZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037526435</pqid></control><display><type>article</type><title>SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES</title><source>SIAM Journals Online</source><source>ABI/INFORM global</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>FUSELIER, EDWARD ; WRIGHT, GRADY B.</creator><creatorcontrib>FUSELIER, EDWARD ; WRIGHT, GRADY B.</creatorcontrib><description>In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on R d , such as radial basis functions, to a smooth, compact embedded submanifold M C R d with no boundary. For restricted kernels having finite smoothness, we provide a complete characterization of the native space on M. After this and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem for smooth and nonsmooth kernels. In the case of nonsmooth kernels, we provide error estimates for target functions too rough to be within the native space of the kernel. Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R³ and a two-dimensional torus.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/110821846</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; CAD ; Computer aided design ; Euclidean space ; Fourier transformations ; Interpolation ; Lie groups ; Mathematical functions ; Mathematical manifolds ; Mathematical surfaces ; Mathematics ; Riemann manifold ; Sobolev spaces</subject><ispartof>SIAM journal on numerical analysis, 2012-01, Vol.50 (3), p.1753-1776</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43</citedby><cites>FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41582965$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1037526435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>FUSELIER, EDWARD</creatorcontrib><creatorcontrib>WRIGHT, GRADY B.</creatorcontrib><title>SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES</title><title>SIAM journal on numerical analysis</title><description>In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on R d , such as radial basis functions, to a smooth, compact embedded submanifold M C R d with no boundary. For restricted kernels having finite smoothness, we provide a complete characterization of the native space on M. After this and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem for smooth and nonsmooth kernels. In the case of nonsmooth kernels, we provide error estimates for target functions too rough to be within the native space of the kernel. Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R³ and a two-dimensional torus.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Euclidean space</subject><subject>Fourier transformations</subject><subject>Interpolation</subject><subject>Lie groups</subject><subject>Mathematical functions</subject><subject>Mathematical manifolds</subject><subject>Mathematical surfaces</subject><subject>Mathematics</subject><subject>Riemann manifold</subject><subject>Sobolev spaces</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kFFLwzAUhYMoOKcP_gAh4JMP1dykSVvfujbTYNeMNpuPpd1ScKid7Qb6741MBhcuh_Pde-AgdA3kHoAFDwAkpBD64gSNgETcCyAgp2hECBMe-DQ6RxfDsCFOh8BG6LtMYmNkIVOcxibGKndirrPYKJ1jN3I2kWnq7HIxmcW5muosLfGrMs-4kKUpVGKcOdelMmopcSqnKldG4hdZ5DIrH3GpJzqTSyyLQhfYnahZbGR5ic7a-n2wV_97jBZTaZJnL9NPKokzb8XA33l07VsKTNC2qWuxrkMrghbq0AdBLK9bDquooZaH64hTHrVhA5ysGyEst6RufTZGt4e_27772tthV226ff_pIisgLOBU-Iw76u5ArfpuGHrbVtv-7aPufxxU_RVbHYt17M2B3Qy7rj-CPvCQRoKzX6zSaZs</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>FUSELIER, EDWARD</creator><creator>WRIGHT, GRADY B.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES</title><author>FUSELIER, EDWARD ; WRIGHT, GRADY B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Euclidean space</topic><topic>Fourier transformations</topic><topic>Interpolation</topic><topic>Lie groups</topic><topic>Mathematical functions</topic><topic>Mathematical manifolds</topic><topic>Mathematical surfaces</topic><topic>Mathematics</topic><topic>Riemann manifold</topic><topic>Sobolev spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FUSELIER, EDWARD</creatorcontrib><creatorcontrib>WRIGHT, GRADY B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FUSELIER, EDWARD</au><au>WRIGHT, GRADY B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>50</volume><issue>3</issue><spage>1753</spage><epage>1776</epage><pages>1753-1776</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this paper we present error estimates for kernel interpolation at scattered sites on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on R d , such as radial basis functions, to a smooth, compact embedded submanifold M C R d with no boundary. For restricted kernels having finite smoothness, we provide a complete characterization of the native space on M. After this and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem for smooth and nonsmooth kernels. In the case of nonsmooth kernels, we provide error estimates for target functions too rough to be within the native space of the kernel. Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R³ and a two-dimensional torus.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110821846</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2012-01, Vol.50 (3), p.1753-1776
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_1037526435
source SIAM Journals Online; ABI/INFORM global; JSTOR Archival Journals and Primary Sources Collection
subjects Applied mathematics
Approximation
CAD
Computer aided design
Euclidean space
Fourier transformations
Interpolation
Lie groups
Mathematical functions
Mathematical manifolds
Mathematical surfaces
Mathematics
Riemann manifold
Sobolev spaces
title SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCATTERED%20DATA%20INTERPOLATION%20ON%20EMBEDDED%20SUBMANIFOLDS%20WITH%20RESTRICTED%20POSITIVE%20DEFINITE%20KERNELS:%20SOBOLEV%20ERROR%20ESTIMATES&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=FUSELIER,%20EDWARD&rft.date=2012-01-01&rft.volume=50&rft.issue=3&rft.spage=1753&rft.epage=1776&rft.pages=1753-1776&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/110821846&rft_dat=%3Cjstor_proqu%3E41582965%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-2d4e21362fbaa6da8e67f1a84160e5af51c9b2e58d95259f8b150db66e5e0af43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1037526435&rft_id=info:pmid/&rft_jstor_id=41582965&rfr_iscdi=true