Loading…

Understanding the errors in input prescription maps based on high spatial resolution remote sensing images

The aim of this study was to determine the positional accuracy of GeoEye-1 images and how it affects the delineation of the input prescription map (IPM) for site-specific strategies. Seven panchromatic and multi-spectral GeoEye-1 satellite images were taken over the LaVentilla village area (Andalusi...

Full description

Saved in:
Bibliographic Details
Published in:Precision agriculture 2012-10, Vol.13 (5), p.581-593
Main Authors: Gómez-Candón, David, López-Granados, Francisca, Caballero-Novella, Juan J, Peña-Barragán, José M, García-Torres, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to determine the positional accuracy of GeoEye-1 images and how it affects the delineation of the input prescription map (IPM) for site-specific strategies. Seven panchromatic and multi-spectral GeoEye-1 satellite images were taken over the LaVentilla village area (Andalusia, Spain), from April to October 2010, at an interval of approximately 3–4 weeks. Sixteen hard-edge ground control points (GCPs) were geo-referenced using a sub-decimetre DGPS. Each DGPS-GCP position was compared with the corresponding co-ordinates for each image to determine the position error (PE) and error direction angle ([Formula: see text]). The PE and [Formula: see text] for each GCP varied slightly for any given GeoEye-1 image and the overall PE among images estimated through the root mean square error (RMSE) varied considerably. RMSE ranged from approximately 2–9 m and from 3.5 to 9 m for the panchromatic and multi-spectral images studied, respectively, and the average was approximately 6.0 m for each of the series of images. Consequently, the geo-referencing of GeoEye-1 images is recommended to increase the positioning accuracy. Conventional geo-referencing using GCPs provided an average RMSE of 2 m for the panchromatic and 3.5 m for the multi-spectral images. The AUGEO System® geo-referencing of the 4-May GeoEye-1 image provided an RMSE of 0.75 m for the panchromatic and 2.70 ± 1.30 m for the multi-spectral images. The IPM delineated from remote-sensed images takes up the image geo-referencing error and, consequently, each micro-plot does not coincide with its corresponding ground-truth micro-plot. In this report, the percentage of non-overlapping area (%NOA) has been developed as a function of the PE/RMSE, α° (the angle between Φge and the operating direction, Φop), and the micro-plot size. The %NOA consistently increased as the RMSE and α° increased, and it decreased as the micro-plot width or length increased. The decision about micro-plot size should be based on the RMSE, α°, and the maximum admissible %NOA. In the case of the GeoEye-1 images studied with an average RMSE of 6 m, a micro-plot size of 6 × 30 m would have yielded an IPM inaccuracy (%NOA) of approximately 5 %, assuming an α° = 0°.
ISSN:1385-2256
1573-1618
DOI:10.1007/s11119-012-9270-9