Loading…

Some asymptotic results on extremes of incomplete samples

Let X 1 , X 2 , ⋯ be a sequence of independent and identically distributed random variables and M n  =  max { X 1 , X 2 , ⋯ , X n }. Suppose that some of the random variables X 1 , X 2 , ⋯ , X n can be observed and denote by the maximum of the observed random variables from the set { X 1 , X 2 , ⋯ ,...

Full description

Saved in:
Bibliographic Details
Published in:Extremes (Boston) 2012-09, Vol.15 (3), p.319-332
Main Authors: Tan, Zhongquan, Wang, Yuebao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703
cites cdi_FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703
container_end_page 332
container_issue 3
container_start_page 319
container_title Extremes (Boston)
container_volume 15
creator Tan, Zhongquan
Wang, Yuebao
description Let X 1 , X 2 , ⋯ be a sequence of independent and identically distributed random variables and M n  =  max { X 1 , X 2 , ⋯ , X n }. Suppose that some of the random variables X 1 , X 2 , ⋯ , X n can be observed and denote by the maximum of the observed random variables from the set { X 1 , X 2 , ⋯ , X n }. The limiting distribution of random vector is derived. The result is also extended to the case of stationary Gaussian sequences. In the end, the almost sure limit theorem on for a sequence of independent and identically distributed random variables is proved.
doi_str_mv 10.1007/s10687-011-0140-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1039256997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759527081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52hms0k2Ryl-QcGDCt7CmkykpbtZkxRsf70p68GLh2Hew_PMwEvIJbBrYEzdJGCyVZQBlGkY3R-RGQhVUw3i_bhk3koKWutTcpbSmhUHpJgR_RJ6rLq068cc8spWEdN2k1MVhgq_c8QeS_bVarChHzeYsUrdIaRzcuK7TcKL3z0nb_d3r4tHunx-eFrcLqnlIDOVH7JrWuU8595x7phrEYBLhdYKAO-s9U51qBB4LQRy3ziGXHGUNYJifE6uprtjDF9bTNmswzYO5aUBxnUtpNaqUDBRNoaUInozxlXfxV2BzKEhMzVkSkPm0JDZF6eenFTY4RPj38v_ST_kUGnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039256997</pqid></control><display><type>article</type><title>Some asymptotic results on extremes of incomplete samples</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Tan, Zhongquan ; Wang, Yuebao</creator><creatorcontrib>Tan, Zhongquan ; Wang, Yuebao</creatorcontrib><description>Let X 1 , X 2 , ⋯ be a sequence of independent and identically distributed random variables and M n  =  max { X 1 , X 2 , ⋯ , X n }. Suppose that some of the random variables X 1 , X 2 , ⋯ , X n can be observed and denote by the maximum of the observed random variables from the set { X 1 , X 2 , ⋯ , X n }. The limiting distribution of random vector is derived. The result is also extended to the case of stationary Gaussian sequences. In the end, the almost sure limit theorem on for a sequence of independent and identically distributed random variables is proved.</description><identifier>ISSN: 1386-1999</identifier><identifier>EISSN: 1572-915X</identifier><identifier>DOI: 10.1007/s10687-011-0140-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Air pollution ; Asymptotic methods ; Civil Engineering ; Economics ; Environmental Management ; Finance ; Hydrogeology ; Insurance ; Management ; Mathematical models ; Mathematics and Statistics ; Quality Control ; Random variables ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business ; Theory</subject><ispartof>Extremes (Boston), 2012-09, Vol.15 (3), p.319-332</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703</citedby><cites>FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1039256997/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1039256997?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74766</link.rule.ids></links><search><creatorcontrib>Tan, Zhongquan</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><title>Some asymptotic results on extremes of incomplete samples</title><title>Extremes (Boston)</title><addtitle>Extremes</addtitle><description>Let X 1 , X 2 , ⋯ be a sequence of independent and identically distributed random variables and M n  =  max { X 1 , X 2 , ⋯ , X n }. Suppose that some of the random variables X 1 , X 2 , ⋯ , X n can be observed and denote by the maximum of the observed random variables from the set { X 1 , X 2 , ⋯ , X n }. The limiting distribution of random vector is derived. The result is also extended to the case of stationary Gaussian sequences. In the end, the almost sure limit theorem on for a sequence of independent and identically distributed random variables is proved.</description><subject>Air pollution</subject><subject>Asymptotic methods</subject><subject>Civil Engineering</subject><subject>Economics</subject><subject>Environmental Management</subject><subject>Finance</subject><subject>Hydrogeology</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Quality Control</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Theory</subject><issn>1386-1999</issn><issn>1572-915X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52hms0k2Ryl-QcGDCt7CmkykpbtZkxRsf70p68GLh2Hew_PMwEvIJbBrYEzdJGCyVZQBlGkY3R-RGQhVUw3i_bhk3koKWutTcpbSmhUHpJgR_RJ6rLq068cc8spWEdN2k1MVhgq_c8QeS_bVarChHzeYsUrdIaRzcuK7TcKL3z0nb_d3r4tHunx-eFrcLqnlIDOVH7JrWuU8595x7phrEYBLhdYKAO-s9U51qBB4LQRy3ziGXHGUNYJifE6uprtjDF9bTNmswzYO5aUBxnUtpNaqUDBRNoaUInozxlXfxV2BzKEhMzVkSkPm0JDZF6eenFTY4RPj38v_ST_kUGnQ</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Tan, Zhongquan</creator><creator>Wang, Yuebao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120901</creationdate><title>Some asymptotic results on extremes of incomplete samples</title><author>Tan, Zhongquan ; Wang, Yuebao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air pollution</topic><topic>Asymptotic methods</topic><topic>Civil Engineering</topic><topic>Economics</topic><topic>Environmental Management</topic><topic>Finance</topic><topic>Hydrogeology</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Quality Control</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhongquan</creatorcontrib><creatorcontrib>Wang, Yuebao</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Extremes (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Zhongquan</au><au>Wang, Yuebao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some asymptotic results on extremes of incomplete samples</atitle><jtitle>Extremes (Boston)</jtitle><stitle>Extremes</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>15</volume><issue>3</issue><spage>319</spage><epage>332</epage><pages>319-332</pages><issn>1386-1999</issn><eissn>1572-915X</eissn><abstract>Let X 1 , X 2 , ⋯ be a sequence of independent and identically distributed random variables and M n  =  max { X 1 , X 2 , ⋯ , X n }. Suppose that some of the random variables X 1 , X 2 , ⋯ , X n can be observed and denote by the maximum of the observed random variables from the set { X 1 , X 2 , ⋯ , X n }. The limiting distribution of random vector is derived. The result is also extended to the case of stationary Gaussian sequences. In the end, the almost sure limit theorem on for a sequence of independent and identically distributed random variables is proved.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10687-011-0140-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-1999
ispartof Extremes (Boston), 2012-09, Vol.15 (3), p.319-332
issn 1386-1999
1572-915X
language eng
recordid cdi_proquest_journals_1039256997
source Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Air pollution
Asymptotic methods
Civil Engineering
Economics
Environmental Management
Finance
Hydrogeology
Insurance
Management
Mathematical models
Mathematics and Statistics
Quality Control
Random variables
Reliability
Safety and Risk
Statistics
Statistics for Business
Theory
title Some asymptotic results on extremes of incomplete samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20asymptotic%20results%20on%20extremes%20of%20incomplete%20samples&rft.jtitle=Extremes%20(Boston)&rft.au=Tan,%20Zhongquan&rft.date=2012-09-01&rft.volume=15&rft.issue=3&rft.spage=319&rft.epage=332&rft.pages=319-332&rft.issn=1386-1999&rft.eissn=1572-915X&rft_id=info:doi/10.1007/s10687-011-0140-z&rft_dat=%3Cproquest_cross%3E2759527081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-6b6a487df33fd33d0d8e11367ecc511fdccfd7ae7e13255e3f4d0e373e62e1703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1039256997&rft_id=info:pmid/&rfr_iscdi=true