Loading…

Fabrication and mechanical properties of PLLA and CPC composite scaffolds

The brittleness and insufficient strength of biomaterials such as calcium phosphate cement (CPC) limit their applications in physiologically non-load-bearing bone lesions. These limitations stimulated the research for developing degradable polymer-ceramic composite materials that can closely match t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2012-09, Vol.26 (9), p.2857-2862
Main Authors: Xu, Shanglong, Guo, Wei, Lu, Junjun, Li, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The brittleness and insufficient strength of biomaterials such as calcium phosphate cement (CPC) limit their applications in physiologically non-load-bearing bone lesions. These limitations stimulated the research for developing degradable polymer-ceramic composite materials that can closely match the modulus of bones. In this study, poly (L-lactic acid)/calcium phosphate cement (PLLA/CPC) composite scaffolds were fabricated via a four-step process, namely, measurement, prototyping, compounding, and dissolving. The design and mechanical properties of the PLLA/CPC composite structures were theoretically and experimentally studied. The PLLA/CPC scaffold improved the mechanical properties of the CPC. The CPC’s compressive strength and strengthening percentage increase with higher PLLA volume. Such composites may have a clinical use for load-bearing bone fixation.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-012-0732-9