Loading…

New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation

The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2012-10, Vol.60 (10), p.5549-5556
Main Authors: Yujiao Zheng, Ozdemir, O., Ruixin Niu, Varshney, P. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833
cites cdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833
container_end_page 5556
container_issue 10
container_start_page 5549
container_title IEEE transactions on signal processing
container_volume 60
creator Yujiao Zheng
Ozdemir, O.
Ruixin Niu
Varshney, P. K.
description The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.
doi_str_mv 10.1109/TSP.2012.2205686
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1040774532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6224195</ieee_id><sourcerecordid>2763383861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKt7wc2ACG6mntxnllrqBYqKF3A3pGkCKdOkJlNKH8nn8MVMaenCbE7gfP9_zvkROscwwBjqm4_31wEBTAaEABeVOEA9XDNcApPiMP-B05JX8usYnaQ0A8CM1aKHmmezKobBT13ngldt8RpSZ6ILsRhGNf_9ieWbCsU4rEws7sLST1Nhc_M5-NZ5o2Lxbr6Xxncua-_U2iSnfDFKnZurjeMpOrKqTeZsV_vo8370MXwsxy8PT8PbcakpZ11JGZ2o2jJsmcxPS8krXYPmFSUEa7CaAyFaTkBoS9h0CkxQbgi3WAtSUdpH11vfRQx5n9Q1c5e0aVvlTVimBguJGWdVHtRHl__QWVjGfHumgIGUjFOSKdhSOoaUorHNIuab4jpDzSbxJifebBJvdolnydXOWCWtWhuV1y7tdUQwoHW1WeBiyzljzL4tCGG45vQP-WmI3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040774532</pqid></control><display><type>article</type><title>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yujiao Zheng ; Ozdemir, O. ; Ruixin Niu ; Varshney, P. K.</creator><creatorcontrib>Yujiao Zheng ; Ozdemir, O. ; Ruixin Niu ; Varshney, P. K.</creatorcontrib><description>The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2012.2205686</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Bayesian analysis ; Bayesian methods ; Detection, estimation, filtering, equalization, prediction ; Dynamical systems ; Exact sciences and technology ; Filtering ; Information, signal and communications theory ; Lower bounds ; Noise measurement ; Nonlinear dynamics ; Nonlinear filtering ; Nonlinearity ; On-line systems ; Online ; particle filters ; posterior Cramér-Rao lower bounds ; Radar tracking ; Signal and communications theory ; Signal, noise ; Target tracking ; Telecommunications and information theory ; Time measurement ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2012-10, Vol.60 (10), p.5549-5556</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</citedby><cites>FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6224195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26403984$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yujiao Zheng</creatorcontrib><creatorcontrib>Ozdemir, O.</creatorcontrib><creatorcontrib>Ruixin Niu</creatorcontrib><creatorcontrib>Varshney, P. K.</creatorcontrib><title>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Information, signal and communications theory</subject><subject>Lower bounds</subject><subject>Noise measurement</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear filtering</subject><subject>Nonlinearity</subject><subject>On-line systems</subject><subject>Online</subject><subject>particle filters</subject><subject>posterior Cramér-Rao lower bounds</subject><subject>Radar tracking</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>Time measurement</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMoWKt7wc2ACG6mntxnllrqBYqKF3A3pGkCKdOkJlNKH8nn8MVMaenCbE7gfP9_zvkROscwwBjqm4_31wEBTAaEABeVOEA9XDNcApPiMP-B05JX8usYnaQ0A8CM1aKHmmezKobBT13ngldt8RpSZ6ILsRhGNf_9ieWbCsU4rEws7sLST1Nhc_M5-NZ5o2Lxbr6Xxncua-_U2iSnfDFKnZurjeMpOrKqTeZsV_vo8370MXwsxy8PT8PbcakpZ11JGZ2o2jJsmcxPS8krXYPmFSUEa7CaAyFaTkBoS9h0CkxQbgi3WAtSUdpH11vfRQx5n9Q1c5e0aVvlTVimBguJGWdVHtRHl__QWVjGfHumgIGUjFOSKdhSOoaUorHNIuab4jpDzSbxJifebBJvdolnydXOWCWtWhuV1y7tdUQwoHW1WeBiyzljzL4tCGG45vQP-WmI3A</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Yujiao Zheng</creator><creator>Ozdemir, O.</creator><creator>Ruixin Niu</creator><creator>Varshney, P. K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121001</creationdate><title>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</title><author>Yujiao Zheng ; Ozdemir, O. ; Ruixin Niu ; Varshney, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Information, signal and communications theory</topic><topic>Lower bounds</topic><topic>Noise measurement</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear filtering</topic><topic>Nonlinearity</topic><topic>On-line systems</topic><topic>Online</topic><topic>particle filters</topic><topic>posterior Cramér-Rao lower bounds</topic><topic>Radar tracking</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>Time measurement</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yujiao Zheng</creatorcontrib><creatorcontrib>Ozdemir, O.</creatorcontrib><creatorcontrib>Ruixin Niu</creatorcontrib><creatorcontrib>Varshney, P. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yujiao Zheng</au><au>Ozdemir, O.</au><au>Ruixin Niu</au><au>Varshney, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>60</volume><issue>10</issue><spage>5549</spage><epage>5556</epage><pages>5549-5556</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2012.2205686</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2012-10, Vol.60 (10), p.5549-5556
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_1040774532
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Approximation methods
Bayesian analysis
Bayesian methods
Detection, estimation, filtering, equalization, prediction
Dynamical systems
Exact sciences and technology
Filtering
Information, signal and communications theory
Lower bounds
Noise measurement
Nonlinear dynamics
Nonlinear filtering
Nonlinearity
On-line systems
Online
particle filters
posterior Cramér-Rao lower bounds
Radar tracking
Signal and communications theory
Signal, noise
Target tracking
Telecommunications and information theory
Time measurement
Vectors
title New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Conditional%20Posterior%20Cram%C3%A9r-Rao%20Lower%20Bounds%20for%20Nonlinear%20Sequential%20Bayesian%20Estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yujiao%20Zheng&rft.date=2012-10-01&rft.volume=60&rft.issue=10&rft.spage=5549&rft.epage=5556&rft.pages=5549-5556&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2012.2205686&rft_dat=%3Cproquest_cross%3E2763383861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1040774532&rft_id=info:pmid/&rft_ieee_id=6224195&rfr_iscdi=true