Loading…
New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking...
Saved in:
Published in: | IEEE transactions on signal processing 2012-10, Vol.60 (10), p.5549-5556 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833 |
container_end_page | 5556 |
container_issue | 10 |
container_start_page | 5549 |
container_title | IEEE transactions on signal processing |
container_volume | 60 |
creator | Yujiao Zheng Ozdemir, O. Ruixin Niu Varshney, P. K. |
description | The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another. |
doi_str_mv | 10.1109/TSP.2012.2205686 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1040774532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6224195</ieee_id><sourcerecordid>2763383861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKt7wc2ACG6mntxnllrqBYqKF3A3pGkCKdOkJlNKH8nn8MVMaenCbE7gfP9_zvkROscwwBjqm4_31wEBTAaEABeVOEA9XDNcApPiMP-B05JX8usYnaQ0A8CM1aKHmmezKobBT13ngldt8RpSZ6ILsRhGNf_9ieWbCsU4rEws7sLST1Nhc_M5-NZ5o2Lxbr6Xxncua-_U2iSnfDFKnZurjeMpOrKqTeZsV_vo8370MXwsxy8PT8PbcakpZ11JGZ2o2jJsmcxPS8krXYPmFSUEa7CaAyFaTkBoS9h0CkxQbgi3WAtSUdpH11vfRQx5n9Q1c5e0aVvlTVimBguJGWdVHtRHl__QWVjGfHumgIGUjFOSKdhSOoaUorHNIuab4jpDzSbxJifebBJvdolnydXOWCWtWhuV1y7tdUQwoHW1WeBiyzljzL4tCGG45vQP-WmI3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040774532</pqid></control><display><type>article</type><title>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yujiao Zheng ; Ozdemir, O. ; Ruixin Niu ; Varshney, P. K.</creator><creatorcontrib>Yujiao Zheng ; Ozdemir, O. ; Ruixin Niu ; Varshney, P. K.</creatorcontrib><description>The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2012.2205686</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Bayesian analysis ; Bayesian methods ; Detection, estimation, filtering, equalization, prediction ; Dynamical systems ; Exact sciences and technology ; Filtering ; Information, signal and communications theory ; Lower bounds ; Noise measurement ; Nonlinear dynamics ; Nonlinear filtering ; Nonlinearity ; On-line systems ; Online ; particle filters ; posterior Cramér-Rao lower bounds ; Radar tracking ; Signal and communications theory ; Signal, noise ; Target tracking ; Telecommunications and information theory ; Time measurement ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2012-10, Vol.60 (10), p.5549-5556</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</citedby><cites>FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6224195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26403984$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yujiao Zheng</creatorcontrib><creatorcontrib>Ozdemir, O.</creatorcontrib><creatorcontrib>Ruixin Niu</creatorcontrib><creatorcontrib>Varshney, P. K.</creatorcontrib><title>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Information, signal and communications theory</subject><subject>Lower bounds</subject><subject>Noise measurement</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear filtering</subject><subject>Nonlinearity</subject><subject>On-line systems</subject><subject>Online</subject><subject>particle filters</subject><subject>posterior Cramér-Rao lower bounds</subject><subject>Radar tracking</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>Time measurement</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMoWKt7wc2ACG6mntxnllrqBYqKF3A3pGkCKdOkJlNKH8nn8MVMaenCbE7gfP9_zvkROscwwBjqm4_31wEBTAaEABeVOEA9XDNcApPiMP-B05JX8usYnaQ0A8CM1aKHmmezKobBT13ngldt8RpSZ6ILsRhGNf_9ieWbCsU4rEws7sLST1Nhc_M5-NZ5o2Lxbr6Xxncua-_U2iSnfDFKnZurjeMpOrKqTeZsV_vo8370MXwsxy8PT8PbcakpZ11JGZ2o2jJsmcxPS8krXYPmFSUEa7CaAyFaTkBoS9h0CkxQbgi3WAtSUdpH11vfRQx5n9Q1c5e0aVvlTVimBguJGWdVHtRHl__QWVjGfHumgIGUjFOSKdhSOoaUorHNIuab4jpDzSbxJifebBJvdolnydXOWCWtWhuV1y7tdUQwoHW1WeBiyzljzL4tCGG45vQP-WmI3A</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Yujiao Zheng</creator><creator>Ozdemir, O.</creator><creator>Ruixin Niu</creator><creator>Varshney, P. K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121001</creationdate><title>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</title><author>Yujiao Zheng ; Ozdemir, O. ; Ruixin Niu ; Varshney, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Information, signal and communications theory</topic><topic>Lower bounds</topic><topic>Noise measurement</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear filtering</topic><topic>Nonlinearity</topic><topic>On-line systems</topic><topic>Online</topic><topic>particle filters</topic><topic>posterior Cramér-Rao lower bounds</topic><topic>Radar tracking</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>Time measurement</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yujiao Zheng</creatorcontrib><creatorcontrib>Ozdemir, O.</creatorcontrib><creatorcontrib>Ruixin Niu</creatorcontrib><creatorcontrib>Varshney, P. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yujiao Zheng</au><au>Ozdemir, O.</au><au>Ruixin Niu</au><au>Varshney, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>60</volume><issue>10</issue><spage>5549</spage><epage>5556</epage><pages>5549-5556</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky , provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for online adaptive resource management for dynamic systems. For online estimation performance evaluation in a nonlinear system, the concept of conditional PCRLB was proposed by Zuo in 2011. In this paper, two other online conditional PCRLBs are proposed which are alternatives to the one proposed by Zuo Numerical examples are provided to show that the three online bounds, namely the conditional PCRLB proposed by Zuo and the two conditional PCRLBs proposed in this paper, are very close to one another.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2012.2205686</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2012-10, Vol.60 (10), p.5549-5556 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_1040774532 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Approximation methods Bayesian analysis Bayesian methods Detection, estimation, filtering, equalization, prediction Dynamical systems Exact sciences and technology Filtering Information, signal and communications theory Lower bounds Noise measurement Nonlinear dynamics Nonlinear filtering Nonlinearity On-line systems Online particle filters posterior Cramér-Rao lower bounds Radar tracking Signal and communications theory Signal, noise Target tracking Telecommunications and information theory Time measurement Vectors |
title | New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Conditional%20Posterior%20Cram%C3%A9r-Rao%20Lower%20Bounds%20for%20Nonlinear%20Sequential%20Bayesian%20Estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yujiao%20Zheng&rft.date=2012-10-01&rft.volume=60&rft.issue=10&rft.spage=5549&rft.epage=5556&rft.pages=5549-5556&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2012.2205686&rft_dat=%3Cproquest_cross%3E2763383861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-343ba9f41f47777c7758c90c583221c0fc5022c7b06cf24dd04635e25f1c62833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1040774532&rft_id=info:pmid/&rft_ieee_id=6224195&rfr_iscdi=true |