Loading…

Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses

The p53 protein plays a central role in the prevention of tumorigenesis. Cellular stresses, such as DNA damage and aberrant oncogene activation, trigger induction of p53 that halts cellular proliferation and allows cells to be repaired. If cellular damage is beyond the capability of the repair mecha...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-09, Vol.109 (38), p.E2543-E2550
Main Authors: Wei, Jinxiong, Noto, Jennifer, Zaika, Elena, Romero-Gallo, Judith, Correa, Pelayo, El-Rifai, Wael, Peek, Richard M, Zaika, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3
cites cdi_FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3
container_end_page E2550
container_issue 38
container_start_page E2543
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Wei, Jinxiong
Noto, Jennifer
Zaika, Elena
Romero-Gallo, Judith
Correa, Pelayo
El-Rifai, Wael
Peek, Richard M
Zaika, Alexander
description The p53 protein plays a central role in the prevention of tumorigenesis. Cellular stresses, such as DNA damage and aberrant oncogene activation, trigger induction of p53 that halts cellular proliferation and allows cells to be repaired. If cellular damage is beyond the capability of the repair mechanisms, p53 induces apoptosis or cell cycle arrest, preventing damaged cells from becoming cancerous. However, emerging evidence suggests that the function of p53 needs to be considered as isoform-specific. Here, we report that the expression profile of p53 can be shifted toward inhibitory p53 isoforms by the pathogenic bacterium Helicobacter pylori , which is known for its strong association with gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. We found that interaction of H. pylori with gastric epithelial cells, mediated via the cag pathogenicity island, induces N-terminally truncated 133p53 and 160p53 isoforms in human cells. Induction of an orthologous p53 isoform, 153p53, was also found in H. pylori -infected Mongolian gerbils. The p53 isoforms inhibit p53 and p73 activities, induce NF-κB, and increase survival of infected cells. Expression of 133p53, in response to H. pylori infection, is regulated by phosphorylation of c-Jun and activation of activator protein-1–dependent transcription. Together, these results provide unique insights into the regulation of p53 protein and may contribute to the understanding of tumorigenesis associated with H. pylori .
doi_str_mv 10.1073/pnas.1205664109
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1041212458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1041326997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRtY4sIl7fgjTnxBQlWhSJVAgp4tx5nsukrsYCeI3vnDSbpLC1xsPc1vnubpEfKSwSmDSpyNweZTxqFUSjLQj8hmeVmhpIbHZAPAq6KWXJ6QZznfAIAua3hKTjjXvJJQbsivL3baxx0G72hj3YTJzwO9xN67eNB0vO1j8tT2i8h02iPFn2PCnH0MdEyx8z3S2NGxFKuc0Afqc-xiGjK1ob0bLPwYQ0Y6Reqw7-feJpqn1Qbzc_Kks33GF8d_S64_XHw7vyyuPn_8dP7-qnCygqmwzHHdMhS2bWRXsk4pwdFa5LppsbEaOlkLLVteatTMtli5WjHXgmI1aCe25N3Bd5ybAVuHYUq2N2Pyg023Jlpv_p0Evze7-MMIWdaiYovB26NBit9nzJMZfF7j2IBxzoaBZIIrrasFffMfehPnFJZ4dxRnfPXckrMD5VLMOWF3fwwDszZs1obNQ8PLxqu_M9zzfypdAHoE1s0HO21EbS54KcWCvD4gnY3G7pLP5vorB6YAGNcVV-I3fvu5LQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041212458</pqid></control><display><type>article</type><title>Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses</title><source>PubMed Central</source><source>JSTOR</source><creator>Wei, Jinxiong ; Noto, Jennifer ; Zaika, Elena ; Romero-Gallo, Judith ; Correa, Pelayo ; El-Rifai, Wael ; Peek, Richard M ; Zaika, Alexander</creator><creatorcontrib>Wei, Jinxiong ; Noto, Jennifer ; Zaika, Elena ; Romero-Gallo, Judith ; Correa, Pelayo ; El-Rifai, Wael ; Peek, Richard M ; Zaika, Alexander</creatorcontrib><description>The p53 protein plays a central role in the prevention of tumorigenesis. Cellular stresses, such as DNA damage and aberrant oncogene activation, trigger induction of p53 that halts cellular proliferation and allows cells to be repaired. If cellular damage is beyond the capability of the repair mechanisms, p53 induces apoptosis or cell cycle arrest, preventing damaged cells from becoming cancerous. However, emerging evidence suggests that the function of p53 needs to be considered as isoform-specific. Here, we report that the expression profile of p53 can be shifted toward inhibitory p53 isoforms by the pathogenic bacterium Helicobacter pylori , which is known for its strong association with gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. We found that interaction of H. pylori with gastric epithelial cells, mediated via the cag pathogenicity island, induces N-terminally truncated 133p53 and 160p53 isoforms in human cells. Induction of an orthologous p53 isoform, 153p53, was also found in H. pylori -infected Mongolian gerbils. The p53 isoforms inhibit p53 and p73 activities, induce NF-κB, and increase survival of infected cells. Expression of 133p53, in response to H. pylori infection, is regulated by phosphorylation of c-Jun and activation of activator protein-1–dependent transcription. Together, these results provide unique insights into the regulation of p53 protein and may contribute to the understanding of tumorigenesis associated with H. pylori .</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1205664109</identifier><identifier>PMID: 22927405</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; apoptosis ; bacteria ; Binding sites ; Biological Sciences ; carcinogenesis ; cell cycle checkpoints ; Cell Line, Tumor ; cell proliferation ; Cell Survival ; Coculture Techniques ; Crystal structure ; DNA damage ; epithelial cells ; Gene Expression Profiling ; Gene Expression Regulation ; Gerbillinae ; gerbils ; Helicobacter pylori ; Helicobacter pylori - metabolism ; Humans ; Ions ; lymphoma ; Mutagenesis ; NF-kappa B - metabolism ; oncogenes ; pathogenicity islands ; phosphorylation ; PNAS Plus ; Protein Isoforms ; Proteins ; Ribonucleic acid ; RNA ; stomach neoplasms ; Transcription Factor AP-1 - metabolism ; transcription factor NF-kappa B ; Transcriptional Activation ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.E2543-E2550</ispartof><rights>Copyright National Academy of Sciences Sep 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3</citedby><cites>FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458371/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458371/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22927405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jinxiong</creatorcontrib><creatorcontrib>Noto, Jennifer</creatorcontrib><creatorcontrib>Zaika, Elena</creatorcontrib><creatorcontrib>Romero-Gallo, Judith</creatorcontrib><creatorcontrib>Correa, Pelayo</creatorcontrib><creatorcontrib>El-Rifai, Wael</creatorcontrib><creatorcontrib>Peek, Richard M</creatorcontrib><creatorcontrib>Zaika, Alexander</creatorcontrib><title>Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The p53 protein plays a central role in the prevention of tumorigenesis. Cellular stresses, such as DNA damage and aberrant oncogene activation, trigger induction of p53 that halts cellular proliferation and allows cells to be repaired. If cellular damage is beyond the capability of the repair mechanisms, p53 induces apoptosis or cell cycle arrest, preventing damaged cells from becoming cancerous. However, emerging evidence suggests that the function of p53 needs to be considered as isoform-specific. Here, we report that the expression profile of p53 can be shifted toward inhibitory p53 isoforms by the pathogenic bacterium Helicobacter pylori , which is known for its strong association with gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. We found that interaction of H. pylori with gastric epithelial cells, mediated via the cag pathogenicity island, induces N-terminally truncated 133p53 and 160p53 isoforms in human cells. Induction of an orthologous p53 isoform, 153p53, was also found in H. pylori -infected Mongolian gerbils. The p53 isoforms inhibit p53 and p73 activities, induce NF-κB, and increase survival of infected cells. Expression of 133p53, in response to H. pylori infection, is regulated by phosphorylation of c-Jun and activation of activator protein-1–dependent transcription. Together, these results provide unique insights into the regulation of p53 protein and may contribute to the understanding of tumorigenesis associated with H. pylori .</description><subject>Animals</subject><subject>apoptosis</subject><subject>bacteria</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>carcinogenesis</subject><subject>cell cycle checkpoints</subject><subject>Cell Line, Tumor</subject><subject>cell proliferation</subject><subject>Cell Survival</subject><subject>Coculture Techniques</subject><subject>Crystal structure</subject><subject>DNA damage</subject><subject>epithelial cells</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gerbillinae</subject><subject>gerbils</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - metabolism</subject><subject>Humans</subject><subject>Ions</subject><subject>lymphoma</subject><subject>Mutagenesis</subject><subject>NF-kappa B - metabolism</subject><subject>oncogenes</subject><subject>pathogenicity islands</subject><subject>phosphorylation</subject><subject>PNAS Plus</subject><subject>Protein Isoforms</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>stomach neoplasms</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>transcription factor NF-kappa B</subject><subject>Transcriptional Activation</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EosvCmRtY4sIl7fgjTnxBQlWhSJVAgp4tx5nsukrsYCeI3vnDSbpLC1xsPc1vnubpEfKSwSmDSpyNweZTxqFUSjLQj8hmeVmhpIbHZAPAq6KWXJ6QZznfAIAua3hKTjjXvJJQbsivL3baxx0G72hj3YTJzwO9xN67eNB0vO1j8tT2i8h02iPFn2PCnH0MdEyx8z3S2NGxFKuc0Afqc-xiGjK1ob0bLPwYQ0Y6Reqw7-feJpqn1Qbzc_Kks33GF8d_S64_XHw7vyyuPn_8dP7-qnCygqmwzHHdMhS2bWRXsk4pwdFa5LppsbEaOlkLLVteatTMtli5WjHXgmI1aCe25N3Bd5ybAVuHYUq2N2Pyg023Jlpv_p0Evze7-MMIWdaiYovB26NBit9nzJMZfF7j2IBxzoaBZIIrrasFffMfehPnFJZ4dxRnfPXckrMD5VLMOWF3fwwDszZs1obNQ8PLxqu_M9zzfypdAHoE1s0HO21EbS54KcWCvD4gnY3G7pLP5vorB6YAGNcVV-I3fvu5LQ</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Wei, Jinxiong</creator><creator>Noto, Jennifer</creator><creator>Zaika, Elena</creator><creator>Romero-Gallo, Judith</creator><creator>Correa, Pelayo</creator><creator>El-Rifai, Wael</creator><creator>Peek, Richard M</creator><creator>Zaika, Alexander</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120918</creationdate><title>Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses</title><author>Wei, Jinxiong ; Noto, Jennifer ; Zaika, Elena ; Romero-Gallo, Judith ; Correa, Pelayo ; El-Rifai, Wael ; Peek, Richard M ; Zaika, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>apoptosis</topic><topic>bacteria</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>carcinogenesis</topic><topic>cell cycle checkpoints</topic><topic>Cell Line, Tumor</topic><topic>cell proliferation</topic><topic>Cell Survival</topic><topic>Coculture Techniques</topic><topic>Crystal structure</topic><topic>DNA damage</topic><topic>epithelial cells</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gerbillinae</topic><topic>gerbils</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - metabolism</topic><topic>Humans</topic><topic>Ions</topic><topic>lymphoma</topic><topic>Mutagenesis</topic><topic>NF-kappa B - metabolism</topic><topic>oncogenes</topic><topic>pathogenicity islands</topic><topic>phosphorylation</topic><topic>PNAS Plus</topic><topic>Protein Isoforms</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>stomach neoplasms</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>transcription factor NF-kappa B</topic><topic>Transcriptional Activation</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jinxiong</creatorcontrib><creatorcontrib>Noto, Jennifer</creatorcontrib><creatorcontrib>Zaika, Elena</creatorcontrib><creatorcontrib>Romero-Gallo, Judith</creatorcontrib><creatorcontrib>Correa, Pelayo</creatorcontrib><creatorcontrib>El-Rifai, Wael</creatorcontrib><creatorcontrib>Peek, Richard M</creatorcontrib><creatorcontrib>Zaika, Alexander</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jinxiong</au><au>Noto, Jennifer</au><au>Zaika, Elena</au><au>Romero-Gallo, Judith</au><au>Correa, Pelayo</au><au>El-Rifai, Wael</au><au>Peek, Richard M</au><au>Zaika, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>109</volume><issue>38</issue><spage>E2543</spage><epage>E2550</epage><pages>E2543-E2550</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The p53 protein plays a central role in the prevention of tumorigenesis. Cellular stresses, such as DNA damage and aberrant oncogene activation, trigger induction of p53 that halts cellular proliferation and allows cells to be repaired. If cellular damage is beyond the capability of the repair mechanisms, p53 induces apoptosis or cell cycle arrest, preventing damaged cells from becoming cancerous. However, emerging evidence suggests that the function of p53 needs to be considered as isoform-specific. Here, we report that the expression profile of p53 can be shifted toward inhibitory p53 isoforms by the pathogenic bacterium Helicobacter pylori , which is known for its strong association with gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. We found that interaction of H. pylori with gastric epithelial cells, mediated via the cag pathogenicity island, induces N-terminally truncated 133p53 and 160p53 isoforms in human cells. Induction of an orthologous p53 isoform, 153p53, was also found in H. pylori -infected Mongolian gerbils. The p53 isoforms inhibit p53 and p73 activities, induce NF-κB, and increase survival of infected cells. Expression of 133p53, in response to H. pylori infection, is regulated by phosphorylation of c-Jun and activation of activator protein-1–dependent transcription. Together, these results provide unique insights into the regulation of p53 protein and may contribute to the understanding of tumorigenesis associated with H. pylori .</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22927405</pmid><doi>10.1073/pnas.1205664109</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-09, Vol.109 (38), p.E2543-E2550
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1041212458
source PubMed Central; JSTOR
subjects Animals
apoptosis
bacteria
Binding sites
Biological Sciences
carcinogenesis
cell cycle checkpoints
Cell Line, Tumor
cell proliferation
Cell Survival
Coculture Techniques
Crystal structure
DNA damage
epithelial cells
Gene Expression Profiling
Gene Expression Regulation
Gerbillinae
gerbils
Helicobacter pylori
Helicobacter pylori - metabolism
Humans
Ions
lymphoma
Mutagenesis
NF-kappa B - metabolism
oncogenes
pathogenicity islands
phosphorylation
PNAS Plus
Protein Isoforms
Proteins
Ribonucleic acid
RNA
stomach neoplasms
Transcription Factor AP-1 - metabolism
transcription factor NF-kappa B
Transcriptional Activation
Tumor Suppressor Protein p53 - chemistry
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
title Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathogenic%20bacterium%20Helicobacter%20pylori%20alters%20the%20expression%20profile%20of%20p53%20protein%20isoforms%20and%20p53%20response%20to%20cellular%20stresses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wei,%20Jinxiong&rft.date=2012-09-18&rft.volume=109&rft.issue=38&rft.spage=E2543&rft.epage=E2550&rft.pages=E2543-E2550&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1205664109&rft_dat=%3Cproquest_pubme%3E1041326997%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-a1c29d1e3adb4f51f6632eaae29bdeba90f48394d259e91ade7c861cd061809c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1041212458&rft_id=info:pmid/22927405&rfr_iscdi=true