Loading…

Synthesis and Characterization of Novel n-9 Fatty Acid Conjugates Possessing Antineoplastic Properties

The present study enumerates the synthesis, spectroscopic characterization, and evaluation of anticancer potential of esters of two n-9 fatty acids viz., oleic acid (OLA) and ricinoleic acid (RCA) with 2,4- or 2,6-diisopropylphenol. The synthesis strategy involved esterification of the hydroxyl grou...

Full description

Saved in:
Bibliographic Details
Published in:Lipids 2012-10, Vol.47 (10), p.973-986
Main Authors: Khan, Azmat A., Husain, Ahmad, Jabeen, Mumtaz, Mustafa, Jamal, Owais, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study enumerates the synthesis, spectroscopic characterization, and evaluation of anticancer potential of esters of two n-9 fatty acids viz., oleic acid (OLA) and ricinoleic acid (RCA) with 2,4- or 2,6-diisopropylphenol. The synthesis strategy involved esterification of the hydroxyl group of diisopropylphenol (propofol) to the terminal carboxyl group of n-9 fatty acid. The synthesized propofol-n-9 conjugates having greater lipophilic character were tested initially for cytotoxicity in-vitro. The conjugates showed specific growth inhibition of cancer cell lines whereas no effect was observed in normal cells. In general, pronounced growth inhibition was found against the human skin malignant melanoma cell line (SK-MEL-1). The anticancer potential was also determined by testing the effect of these conjugates on cell migration, cell adhesion and induction of apoptosis in SK-MEL-1 cancer cells. Propofol-OLA conjugates significantly induced apoptosis in contrast to propofol-RCA conjugates which showed only weak signals for cytochrome c . Conclusively, the synthesized novel ester conjugates showed considerable moderation of anti-tumor activity. This preliminary study places in-house synthesized conjugates into the new class of anticancer agents that possess selectivity toward cancer cells over normal cells.
ISSN:0024-4201
1558-9307
DOI:10.1007/s11745-012-3707-9