Loading…

STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS

A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature i...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on applied mathematics 2012-01, Vol.72 (5), p.1428-1448
Main Authors: FREISTÜHLER, HEINRICH, SCHMEISER, CHRISTIAN, SFAKIANAKIS, NIKOLAOS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243
cites cdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243
container_end_page 1448
container_issue 5
container_start_page 1428
container_title SIAM journal on applied mathematics
container_volume 72
creator FREISTÜHLER, HEINRICH
SCHMEISER, CHRISTIAN
SFAKIANAKIS, NIKOLAOS
description A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.
doi_str_mv 10.1137/100815773
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1076807920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41698411</jstor_id><sourcerecordid>41698411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</originalsourceid><addsrcrecordid>eNpV0E1Lw0AQBuBFFKzVgz9ACHjyEJ3ZfGz2mDbbdiFNSrMFLUJY8gEWNTWbHvz3rlQKngaGZ94ZhpBbhEdEjz0hQIQBY94ZGSHwwGVIn8_JCMALXfQ4vyRXxuwAEEOfj8hroeJJKpxUZHO1cBJZqLWcbJTMs8KRmTPN03wap3IrEmeVpy9LsZZbmc2dOEucRPxrrda5EnZmJtN4KTJVXJOLVr-b5uavjslmJtR04ab5XNpUt6KMD25VV1yHWusQkHkB8zX3MaRR42GNUFXUb7QPlNUMMMC2aesm1KAp0Agop743JvfH3H3ffR0aM5S77tB_2pUlAgsjYJyCVQ9HVfWdMX3Tlvv-7UP33xaVv88rT8-z9u5od2bo-hO0Z_HIt_YH0JZhcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1076807920</pqid></control><display><type>article</type><title>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>LOCUS - SIAM's Online Journal Archive</source><source>ABI/INFORM Global (ProquesT)</source><creator>FREISTÜHLER, HEINRICH ; SCHMEISER, CHRISTIAN ; SFAKIANAKIS, NIKOLAOS</creator><creatorcontrib>FREISTÜHLER, HEINRICH ; SCHMEISER, CHRISTIAN ; SFAKIANAKIS, NIKOLAOS</creatorcontrib><description>A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/100815773</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary value problems ; Conservation laws ; Depolymerization ; Entropy ; Mathematical models ; Microfilaments ; Molecules ; Nucleation ; Polymerization ; Proteins ; Uniqueness</subject><ispartof>SIAM journal on applied mathematics, 2012-01, Vol.72 (5), p.1428-1448</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</citedby><cites>FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41698411$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1076807920?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3183,11687,27923,27924,36059,44362,58237,58470</link.rule.ids></links><search><creatorcontrib>FREISTÜHLER, HEINRICH</creatorcontrib><creatorcontrib>SCHMEISER, CHRISTIAN</creatorcontrib><creatorcontrib>SFAKIANAKIS, NIKOLAOS</creatorcontrib><title>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</title><title>SIAM journal on applied mathematics</title><description>A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Conservation laws</subject><subject>Depolymerization</subject><subject>Entropy</subject><subject>Mathematical models</subject><subject>Microfilaments</subject><subject>Molecules</subject><subject>Nucleation</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Uniqueness</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpV0E1Lw0AQBuBFFKzVgz9ACHjyEJ3ZfGz2mDbbdiFNSrMFLUJY8gEWNTWbHvz3rlQKngaGZ94ZhpBbhEdEjz0hQIQBY94ZGSHwwGVIn8_JCMALXfQ4vyRXxuwAEEOfj8hroeJJKpxUZHO1cBJZqLWcbJTMs8KRmTPN03wap3IrEmeVpy9LsZZbmc2dOEucRPxrrda5EnZmJtN4KTJVXJOLVr-b5uavjslmJtR04ab5XNpUt6KMD25VV1yHWusQkHkB8zX3MaRR42GNUFXUb7QPlNUMMMC2aesm1KAp0Agop743JvfH3H3ffR0aM5S77tB_2pUlAgsjYJyCVQ9HVfWdMX3Tlvv-7UP33xaVv88rT8-z9u5od2bo-hO0Z_HIt_YH0JZhcQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>FREISTÜHLER, HEINRICH</creator><creator>SCHMEISER, CHRISTIAN</creator><creator>SFAKIANAKIS, NIKOLAOS</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20120101</creationdate><title>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</title><author>FREISTÜHLER, HEINRICH ; SCHMEISER, CHRISTIAN ; SFAKIANAKIS, NIKOLAOS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Conservation laws</topic><topic>Depolymerization</topic><topic>Entropy</topic><topic>Mathematical models</topic><topic>Microfilaments</topic><topic>Molecules</topic><topic>Nucleation</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FREISTÜHLER, HEINRICH</creatorcontrib><creatorcontrib>SCHMEISER, CHRISTIAN</creatorcontrib><creatorcontrib>SFAKIANAKIS, NIKOLAOS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProquesT)</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FREISTÜHLER, HEINRICH</au><au>SCHMEISER, CHRISTIAN</au><au>SFAKIANAKIS, NIKOLAOS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>72</volume><issue>5</issue><spage>1428</spage><epage>1448</epage><pages>1428-1448</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100815773</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 2012-01, Vol.72 (5), p.1428-1448
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_1076807920
source JSTOR Archival Journals and Primary Sources Collection; LOCUS - SIAM's Online Journal Archive; ABI/INFORM Global (ProquesT)
subjects Applied mathematics
Boundary conditions
Boundary value problems
Conservation laws
Depolymerization
Entropy
Mathematical models
Microfilaments
Molecules
Nucleation
Polymerization
Proteins
Uniqueness
title STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STABLE%20LENGTH%20DISTRIBUTIONS%20IN%20COLOCALIZED%20POLYMERIZING%20AND%20DEPOLYMERIZING%20PROTEIN%20FILAMENTS&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=FREIST%C3%9CHLER,%20HEINRICH&rft.date=2012-01-01&rft.volume=72&rft.issue=5&rft.spage=1428&rft.epage=1448&rft.pages=1428-1448&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/100815773&rft_dat=%3Cjstor_proqu%3E41698411%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1076807920&rft_id=info:pmid/&rft_jstor_id=41698411&rfr_iscdi=true