Loading…
STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS
A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature i...
Saved in:
Published in: | SIAM journal on applied mathematics 2012-01, Vol.72 (5), p.1428-1448 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243 |
---|---|
cites | cdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243 |
container_end_page | 1448 |
container_issue | 5 |
container_start_page | 1428 |
container_title | SIAM journal on applied mathematics |
container_volume | 72 |
creator | FREISTÜHLER, HEINRICH SCHMEISER, CHRISTIAN SFAKIANAKIS, NIKOLAOS |
description | A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions. |
doi_str_mv | 10.1137/100815773 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1076807920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41698411</jstor_id><sourcerecordid>41698411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</originalsourceid><addsrcrecordid>eNpV0E1Lw0AQBuBFFKzVgz9ACHjyEJ3ZfGz2mDbbdiFNSrMFLUJY8gEWNTWbHvz3rlQKngaGZ94ZhpBbhEdEjz0hQIQBY94ZGSHwwGVIn8_JCMALXfQ4vyRXxuwAEEOfj8hroeJJKpxUZHO1cBJZqLWcbJTMs8KRmTPN03wap3IrEmeVpy9LsZZbmc2dOEucRPxrrda5EnZmJtN4KTJVXJOLVr-b5uavjslmJtR04ab5XNpUt6KMD25VV1yHWusQkHkB8zX3MaRR42GNUFXUb7QPlNUMMMC2aesm1KAp0Agop743JvfH3H3ffR0aM5S77tB_2pUlAgsjYJyCVQ9HVfWdMX3Tlvv-7UP33xaVv88rT8-z9u5od2bo-hO0Z_HIt_YH0JZhcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1076807920</pqid></control><display><type>article</type><title>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>LOCUS - SIAM's Online Journal Archive</source><source>ABI/INFORM Global (ProquesT)</source><creator>FREISTÜHLER, HEINRICH ; SCHMEISER, CHRISTIAN ; SFAKIANAKIS, NIKOLAOS</creator><creatorcontrib>FREISTÜHLER, HEINRICH ; SCHMEISER, CHRISTIAN ; SFAKIANAKIS, NIKOLAOS</creatorcontrib><description>A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/100815773</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary value problems ; Conservation laws ; Depolymerization ; Entropy ; Mathematical models ; Microfilaments ; Molecules ; Nucleation ; Polymerization ; Proteins ; Uniqueness</subject><ispartof>SIAM journal on applied mathematics, 2012-01, Vol.72 (5), p.1428-1448</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</citedby><cites>FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41698411$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1076807920?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3183,11687,27923,27924,36059,44362,58237,58470</link.rule.ids></links><search><creatorcontrib>FREISTÜHLER, HEINRICH</creatorcontrib><creatorcontrib>SCHMEISER, CHRISTIAN</creatorcontrib><creatorcontrib>SFAKIANAKIS, NIKOLAOS</creatorcontrib><title>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</title><title>SIAM journal on applied mathematics</title><description>A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Conservation laws</subject><subject>Depolymerization</subject><subject>Entropy</subject><subject>Mathematical models</subject><subject>Microfilaments</subject><subject>Molecules</subject><subject>Nucleation</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Uniqueness</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpV0E1Lw0AQBuBFFKzVgz9ACHjyEJ3ZfGz2mDbbdiFNSrMFLUJY8gEWNTWbHvz3rlQKngaGZ94ZhpBbhEdEjz0hQIQBY94ZGSHwwGVIn8_JCMALXfQ4vyRXxuwAEEOfj8hroeJJKpxUZHO1cBJZqLWcbJTMs8KRmTPN03wap3IrEmeVpy9LsZZbmc2dOEucRPxrrda5EnZmJtN4KTJVXJOLVr-b5uavjslmJtR04ab5XNpUt6KMD25VV1yHWusQkHkB8zX3MaRR42GNUFXUb7QPlNUMMMC2aesm1KAp0Agop743JvfH3H3ffR0aM5S77tB_2pUlAgsjYJyCVQ9HVfWdMX3Tlvv-7UP33xaVv88rT8-z9u5od2bo-hO0Z_HIt_YH0JZhcQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>FREISTÜHLER, HEINRICH</creator><creator>SCHMEISER, CHRISTIAN</creator><creator>SFAKIANAKIS, NIKOLAOS</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20120101</creationdate><title>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</title><author>FREISTÜHLER, HEINRICH ; SCHMEISER, CHRISTIAN ; SFAKIANAKIS, NIKOLAOS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Conservation laws</topic><topic>Depolymerization</topic><topic>Entropy</topic><topic>Mathematical models</topic><topic>Microfilaments</topic><topic>Molecules</topic><topic>Nucleation</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FREISTÜHLER, HEINRICH</creatorcontrib><creatorcontrib>SCHMEISER, CHRISTIAN</creatorcontrib><creatorcontrib>SFAKIANAKIS, NIKOLAOS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProquesT)</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FREISTÜHLER, HEINRICH</au><au>SCHMEISER, CHRISTIAN</au><au>SFAKIANAKIS, NIKOLAOS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>72</volume><issue>5</issue><spage>1428</spage><epage>1448</epage><pages>1428-1448</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100815773</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2012-01, Vol.72 (5), p.1428-1448 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_1076807920 |
source | JSTOR Archival Journals and Primary Sources Collection; LOCUS - SIAM's Online Journal Archive; ABI/INFORM Global (ProquesT) |
subjects | Applied mathematics Boundary conditions Boundary value problems Conservation laws Depolymerization Entropy Mathematical models Microfilaments Molecules Nucleation Polymerization Proteins Uniqueness |
title | STABLE LENGTH DISTRIBUTIONS IN COLOCALIZED POLYMERIZING AND DEPOLYMERIZING PROTEIN FILAMENTS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STABLE%20LENGTH%20DISTRIBUTIONS%20IN%20COLOCALIZED%20POLYMERIZING%20AND%20DEPOLYMERIZING%20PROTEIN%20FILAMENTS&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=FREIST%C3%9CHLER,%20HEINRICH&rft.date=2012-01-01&rft.volume=72&rft.issue=5&rft.spage=1428&rft.epage=1448&rft.pages=1428-1448&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/100815773&rft_dat=%3Cjstor_proqu%3E41698411%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-cdc9a6aaa60173574a941628e31d10cc24ea4027d70151fefde6a0a2028029243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1076807920&rft_id=info:pmid/&rft_jstor_id=41698411&rfr_iscdi=true |