Loading…

Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells

In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2012-09, Vol.27 (18), p.2327-2341
Main Authors: Xu, Kang, von Wald Cresce, Arthur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663
cites cdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663
container_end_page 2341
container_issue 18
container_start_page 2327
container_title Journal of materials research
container_volume 27
creator Xu, Kang
von Wald Cresce, Arthur
description In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.
doi_str_mv 10.1557/jmr.2012.104
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1082253870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_104</cupid><sourcerecordid>2778330141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKdv_gEFH7VdkqZp-ijDqVDwRd-EkiXXLaNra5IJ_vfe2BAfBJ_u-Pjdd3cfIdeMZqwoytlm6zNOGc8YFSdkwqkQaZFzeUomVCmR8oqJc3IRwoZSVtBSTMh77W7TMHSfOrqhn1n46RPrTNQRQuL6CH5c6-B0l4x-MBACyoisvB7XLjqT6H6wgGRSu2Q_bKDrwiU5a3UX4OpYp-Rt8fA6f0rrl8fn-X2dGkFlTJUphbJUWqGqqhJW8FxbVpWKL5dUSVlY1DmHVlZUtAwsVTzHV1QJwoKU-ZTcHHzxuI8dhNhshp3vcWXDkOVFrkqK1N2BMn4IwUPbjN5ttf9CqNnn12B-zT4_FATi6QEPiPUr8L9N_-Szo73eLr2zK_hn4Bv_joDx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082253870</pqid></control><display><type>article</type><title>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Xu, Kang ; von Wald Cresce, Arthur</creator><creatorcontrib>Xu, Kang ; von Wald Cresce, Arthur</creatorcontrib><description>In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.104</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Biomaterials ; Chemistry ; Decomposition ; Electrodes ; Electrolytes ; Graphite ; Inorganic Chemistry ; Invited Feature Paper ; Lithium ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Studies</subject><ispartof>Journal of materials research, 2012-09, Vol.27 (18), p.2327-2341</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</citedby><cites>FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1082253870/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1082253870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74767</link.rule.ids></links><search><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>von Wald Cresce, Arthur</creatorcontrib><title>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry</subject><subject>Decomposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkNFLwzAQxoMoOKdv_gEFH7VdkqZp-ijDqVDwRd-EkiXXLaNra5IJ_vfe2BAfBJ_u-Pjdd3cfIdeMZqwoytlm6zNOGc8YFSdkwqkQaZFzeUomVCmR8oqJc3IRwoZSVtBSTMh77W7TMHSfOrqhn1n46RPrTNQRQuL6CH5c6-B0l4x-MBACyoisvB7XLjqT6H6wgGRSu2Q_bKDrwiU5a3UX4OpYp-Rt8fA6f0rrl8fn-X2dGkFlTJUphbJUWqGqqhJW8FxbVpWKL5dUSVlY1DmHVlZUtAwsVTzHV1QJwoKU-ZTcHHzxuI8dhNhshp3vcWXDkOVFrkqK1N2BMn4IwUPbjN5ttf9CqNnn12B-zT4_FATi6QEPiPUr8L9N_-Szo73eLr2zK_hn4Bv_joDx</recordid><startdate>20120928</startdate><enddate>20120928</enddate><creator>Xu, Kang</creator><creator>von Wald Cresce, Arthur</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120928</creationdate><title>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</title><author>Xu, Kang ; von Wald Cresce, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry</topic><topic>Decomposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>von Wald Cresce, Arthur</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Collection</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kang</au><au>von Wald Cresce, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2012-09-28</date><risdate>2012</risdate><volume>27</volume><issue>18</issue><spage>2327</spage><epage>2341</epage><pages>2327-2341</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.104</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2012-09, Vol.27 (18), p.2327-2341
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1082253870
source ABI/INFORM Collection; Springer Link
subjects Analysis
Applied and Technical Physics
Biomaterials
Chemistry
Decomposition
Electrodes
Electrolytes
Graphite
Inorganic Chemistry
Invited Feature Paper
Lithium
Materials Engineering
Materials research
Materials Science
Nanotechnology
Studies
title Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li+-solvation/desolvation%20dictates%20interphasial%20processes%20on%20graphitic%20anode%20in%20Li%20ion%20cells&rft.jtitle=Journal%20of%20materials%20research&rft.au=Xu,%20Kang&rft.date=2012-09-28&rft.volume=27&rft.issue=18&rft.spage=2327&rft.epage=2341&rft.pages=2327-2341&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.104&rft_dat=%3Cproquest_cross%3E2778330141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082253870&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_104&rfr_iscdi=true