Loading…
Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells
In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist...
Saved in:
Published in: | Journal of materials research 2012-09, Vol.27 (18), p.2327-2341 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663 |
container_end_page | 2341 |
container_issue | 18 |
container_start_page | 2327 |
container_title | Journal of materials research |
container_volume | 27 |
creator | Xu, Kang von Wald Cresce, Arthur |
description | In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed. |
doi_str_mv | 10.1557/jmr.2012.104 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1082253870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_104</cupid><sourcerecordid>2778330141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKdv_gEFH7VdkqZp-ijDqVDwRd-EkiXXLaNra5IJ_vfe2BAfBJ_u-Pjdd3cfIdeMZqwoytlm6zNOGc8YFSdkwqkQaZFzeUomVCmR8oqJc3IRwoZSVtBSTMh77W7TMHSfOrqhn1n46RPrTNQRQuL6CH5c6-B0l4x-MBACyoisvB7XLjqT6H6wgGRSu2Q_bKDrwiU5a3UX4OpYp-Rt8fA6f0rrl8fn-X2dGkFlTJUphbJUWqGqqhJW8FxbVpWKL5dUSVlY1DmHVlZUtAwsVTzHV1QJwoKU-ZTcHHzxuI8dhNhshp3vcWXDkOVFrkqK1N2BMn4IwUPbjN5ttf9CqNnn12B-zT4_FATi6QEPiPUr8L9N_-Szo73eLr2zK_hn4Bv_joDx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082253870</pqid></control><display><type>article</type><title>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Xu, Kang ; von Wald Cresce, Arthur</creator><creatorcontrib>Xu, Kang ; von Wald Cresce, Arthur</creatorcontrib><description>In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.104</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Biomaterials ; Chemistry ; Decomposition ; Electrodes ; Electrolytes ; Graphite ; Inorganic Chemistry ; Invited Feature Paper ; Lithium ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Studies</subject><ispartof>Journal of materials research, 2012-09, Vol.27 (18), p.2327-2341</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</citedby><cites>FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1082253870/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1082253870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74767</link.rule.ids></links><search><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>von Wald Cresce, Arthur</creatorcontrib><title>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry</subject><subject>Decomposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkNFLwzAQxoMoOKdv_gEFH7VdkqZp-ijDqVDwRd-EkiXXLaNra5IJ_vfe2BAfBJ_u-Pjdd3cfIdeMZqwoytlm6zNOGc8YFSdkwqkQaZFzeUomVCmR8oqJc3IRwoZSVtBSTMh77W7TMHSfOrqhn1n46RPrTNQRQuL6CH5c6-B0l4x-MBACyoisvB7XLjqT6H6wgGRSu2Q_bKDrwiU5a3UX4OpYp-Rt8fA6f0rrl8fn-X2dGkFlTJUphbJUWqGqqhJW8FxbVpWKL5dUSVlY1DmHVlZUtAwsVTzHV1QJwoKU-ZTcHHzxuI8dhNhshp3vcWXDkOVFrkqK1N2BMn4IwUPbjN5ttf9CqNnn12B-zT4_FATi6QEPiPUr8L9N_-Szo73eLr2zK_hn4Bv_joDx</recordid><startdate>20120928</startdate><enddate>20120928</enddate><creator>Xu, Kang</creator><creator>von Wald Cresce, Arthur</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120928</creationdate><title>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</title><author>Xu, Kang ; von Wald Cresce, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry</topic><topic>Decomposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>von Wald Cresce, Arthur</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Collection</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kang</au><au>von Wald Cresce, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2012-09-28</date><risdate>2012</risdate><volume>27</volume><issue>18</issue><spage>2327</spage><epage>2341</epage><pages>2327-2341</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>In any electrochemical device, the interface between electrolyte and electrode should be the only “legitimate” location where redox reactions happen. Particularly in Li ion batteries, these interfaces become “interphases” due to the reactivity of the electrode materials used, and they mainly consist of chemical species from the sacrificial decomposition of electrolyte components. Since the emergence of Li ion technology, it has been recognized that interphase on graphitic anodes, usually referred as SEI (solid electrolyte interphase) after its electrolyte attributes, is the key component supporting the reversibility of Li+-intercalation chemistry. Research attention focused on this component during the past two decades has led to substantial understanding about both its chemistry and mechanism. This article summarizes these progresses, and elaborates on the relatively recent insights, including the effect of Li+-solvation sheath structure on the interphasial processes at graphitic anode. A new strategy of forming a more desirable interphase is also discussed.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.104</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2012-09, Vol.27 (18), p.2327-2341 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_1082253870 |
source | ABI/INFORM Collection; Springer Link |
subjects | Analysis Applied and Technical Physics Biomaterials Chemistry Decomposition Electrodes Electrolytes Graphite Inorganic Chemistry Invited Feature Paper Lithium Materials Engineering Materials research Materials Science Nanotechnology Studies |
title | Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li+-solvation/desolvation%20dictates%20interphasial%20processes%20on%20graphitic%20anode%20in%20Li%20ion%20cells&rft.jtitle=Journal%20of%20materials%20research&rft.au=Xu,%20Kang&rft.date=2012-09-28&rft.volume=27&rft.issue=18&rft.spage=2327&rft.epage=2341&rft.pages=2327-2341&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.104&rft_dat=%3Cproquest_cross%3E2778330141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-8c748d06d489994d423ad19782bb08665d89922ef6904f1ed082391487e4de663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082253870&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_104&rfr_iscdi=true |