Loading…
A Support Vector Machine MUSIC Algorithm
This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads natural...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2012-10, Vol.60 (10), p.4901-4910 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3 |
container_end_page | 4910 |
container_issue | 10 |
container_start_page | 4901 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 60 |
creator | El Gonnouni, A. Martinez-Ramon, Manel Rojo-Alvarez, J. L. Camps-Valls, G. Figueiras-Vidal, A. R. Christodoulou, C. G. |
description | This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches. |
doi_str_mv | 10.1109/TAP.2012.2209195 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1095446253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6242388</ieee_id><sourcerecordid>1315653574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKd3wUtBhF06k5cfTY9j-GOwobBNvIU0JK6ja2vSHvzvTdnw4OnxeJ_35csHoVuCp4Tg_HEze58CJjAFwDnJ-RkaEc5lCgDkHI0wJjLNQXxeoqsQ9nFlkrERmsySdd-2je-SD2u6xicrbXZlbZPVdr2YJ7Pqq_Fltztcowunq2BvTnOMts9Pm_lrunx7Wcxny9RQzrrUGkcyWTgKOSm0gIzxzHEqCilEwTjEJddUU5rlRJOCS2MwBqljn8JkztExmhxzW9989zZ06lAGY6tK17bpgyKUcMEpz1hE7_-h-6b3dWynohHOmABOI4WPlPFNCN461fryoP1PhNSgTkV1alCnTuriy8MpWAejK-d1bcrw9wdiyKZDgbsjV1pr_84CGFAp6S-L3HMe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095446253</pqid></control><display><type>article</type><title>A Support Vector Machine MUSIC Algorithm</title><source>IEEE Xplore (Online service)</source><creator>El Gonnouni, A. ; Martinez-Ramon, Manel ; Rojo-Alvarez, J. L. ; Camps-Valls, G. ; Figueiras-Vidal, A. R. ; Christodoulou, C. G.</creator><creatorcontrib>El Gonnouni, A. ; Martinez-Ramon, Manel ; Rojo-Alvarez, J. L. ; Camps-Valls, G. ; Figueiras-Vidal, A. R. ; Christodoulou, C. G.</creatorcontrib><description>This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2012.2209195</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Antennas ; Applied classical electromagnetism ; Arrays ; Coherence ; Derivation ; Direction of arrival (DOA) ; Direction of arrival estimation ; Distortion ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Estimation ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Minimum Variance Distortionless Response (MVDR) ; MUltiple SIgnal Characterization (MUSIC) ; Multiple signal classification ; Noise ; Physics ; Recursive ; Support Vector Machine (SVM) ; Support vector machines</subject><ispartof>IEEE transactions on antennas and propagation, 2012-10, Vol.60 (10), p.4901-4910</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</citedby><cites>FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6242388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El Gonnouni, A.</creatorcontrib><creatorcontrib>Martinez-Ramon, Manel</creatorcontrib><creatorcontrib>Rojo-Alvarez, J. L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Christodoulou, C. G.</creatorcontrib><title>A Support Vector Machine MUSIC Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Arrays</subject><subject>Coherence</subject><subject>Derivation</subject><subject>Direction of arrival (DOA)</subject><subject>Direction of arrival estimation</subject><subject>Distortion</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Minimum Variance Distortionless Response (MVDR)</subject><subject>MUltiple SIgnal Characterization (MUSIC)</subject><subject>Multiple signal classification</subject><subject>Noise</subject><subject>Physics</subject><subject>Recursive</subject><subject>Support Vector Machine (SVM)</subject><subject>Support vector machines</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUx4MoOKd3wUtBhF06k5cfTY9j-GOwobBNvIU0JK6ja2vSHvzvTdnw4OnxeJ_35csHoVuCp4Tg_HEze58CJjAFwDnJ-RkaEc5lCgDkHI0wJjLNQXxeoqsQ9nFlkrERmsySdd-2je-SD2u6xicrbXZlbZPVdr2YJ7Pqq_Fltztcowunq2BvTnOMts9Pm_lrunx7Wcxny9RQzrrUGkcyWTgKOSm0gIzxzHEqCilEwTjEJddUU5rlRJOCS2MwBqljn8JkztExmhxzW9989zZ06lAGY6tK17bpgyKUcMEpz1hE7_-h-6b3dWynohHOmABOI4WPlPFNCN461fryoP1PhNSgTkV1alCnTuriy8MpWAejK-d1bcrw9wdiyKZDgbsjV1pr_84CGFAp6S-L3HMe</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>El Gonnouni, A.</creator><creator>Martinez-Ramon, Manel</creator><creator>Rojo-Alvarez, J. L.</creator><creator>Camps-Valls, G.</creator><creator>Figueiras-Vidal, A. R.</creator><creator>Christodoulou, C. G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121001</creationdate><title>A Support Vector Machine MUSIC Algorithm</title><author>El Gonnouni, A. ; Martinez-Ramon, Manel ; Rojo-Alvarez, J. L. ; Camps-Valls, G. ; Figueiras-Vidal, A. R. ; Christodoulou, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Arrays</topic><topic>Coherence</topic><topic>Derivation</topic><topic>Direction of arrival (DOA)</topic><topic>Direction of arrival estimation</topic><topic>Distortion</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Minimum Variance Distortionless Response (MVDR)</topic><topic>MUltiple SIgnal Characterization (MUSIC)</topic><topic>Multiple signal classification</topic><topic>Noise</topic><topic>Physics</topic><topic>Recursive</topic><topic>Support Vector Machine (SVM)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Gonnouni, A.</creatorcontrib><creatorcontrib>Martinez-Ramon, Manel</creatorcontrib><creatorcontrib>Rojo-Alvarez, J. L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Christodoulou, C. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Gonnouni, A.</au><au>Martinez-Ramon, Manel</au><au>Rojo-Alvarez, J. L.</au><au>Camps-Valls, G.</au><au>Figueiras-Vidal, A. R.</au><au>Christodoulou, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Support Vector Machine MUSIC Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>60</volume><issue>10</issue><spage>4901</spage><epage>4910</epage><pages>4901-4910</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2012.2209195</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2012-10, Vol.60 (10), p.4901-4910 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_1095446253 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Antennas Applied classical electromagnetism Arrays Coherence Derivation Direction of arrival (DOA) Direction of arrival estimation Distortion Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Estimation Exact sciences and technology Fundamental areas of phenomenology (including applications) Minimum Variance Distortionless Response (MVDR) MUltiple SIgnal Characterization (MUSIC) Multiple signal classification Noise Physics Recursive Support Vector Machine (SVM) Support vector machines |
title | A Support Vector Machine MUSIC Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Support%20Vector%20Machine%20MUSIC%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=El%20Gonnouni,%20A.&rft.date=2012-10-01&rft.volume=60&rft.issue=10&rft.spage=4901&rft.epage=4910&rft.pages=4901-4910&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2012.2209195&rft_dat=%3Cproquest_cross%3E1315653574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1095446253&rft_id=info:pmid/&rft_ieee_id=6242388&rfr_iscdi=true |