Loading…

A Support Vector Machine MUSIC Algorithm

This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads natural...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2012-10, Vol.60 (10), p.4901-4910
Main Authors: El Gonnouni, A., Martinez-Ramon, Manel, Rojo-Alvarez, J. L., Camps-Valls, G., Figueiras-Vidal, A. R., Christodoulou, C. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3
cites cdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3
container_end_page 4910
container_issue 10
container_start_page 4901
container_title IEEE transactions on antennas and propagation
container_volume 60
creator El Gonnouni, A.
Martinez-Ramon, Manel
Rojo-Alvarez, J. L.
Camps-Valls, G.
Figueiras-Vidal, A. R.
Christodoulou, C. G.
description This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.
doi_str_mv 10.1109/TAP.2012.2209195
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1095446253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6242388</ieee_id><sourcerecordid>1315653574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKd3wUtBhF06k5cfTY9j-GOwobBNvIU0JK6ja2vSHvzvTdnw4OnxeJ_35csHoVuCp4Tg_HEze58CJjAFwDnJ-RkaEc5lCgDkHI0wJjLNQXxeoqsQ9nFlkrERmsySdd-2je-SD2u6xicrbXZlbZPVdr2YJ7Pqq_Fltztcowunq2BvTnOMts9Pm_lrunx7Wcxny9RQzrrUGkcyWTgKOSm0gIzxzHEqCilEwTjEJddUU5rlRJOCS2MwBqljn8JkztExmhxzW9989zZ06lAGY6tK17bpgyKUcMEpz1hE7_-h-6b3dWynohHOmABOI4WPlPFNCN461fryoP1PhNSgTkV1alCnTuriy8MpWAejK-d1bcrw9wdiyKZDgbsjV1pr_84CGFAp6S-L3HMe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095446253</pqid></control><display><type>article</type><title>A Support Vector Machine MUSIC Algorithm</title><source>IEEE Xplore (Online service)</source><creator>El Gonnouni, A. ; Martinez-Ramon, Manel ; Rojo-Alvarez, J. L. ; Camps-Valls, G. ; Figueiras-Vidal, A. R. ; Christodoulou, C. G.</creator><creatorcontrib>El Gonnouni, A. ; Martinez-Ramon, Manel ; Rojo-Alvarez, J. L. ; Camps-Valls, G. ; Figueiras-Vidal, A. R. ; Christodoulou, C. G.</creatorcontrib><description>This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2012.2209195</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Antennas ; Applied classical electromagnetism ; Arrays ; Coherence ; Derivation ; Direction of arrival (DOA) ; Direction of arrival estimation ; Distortion ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Estimation ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Minimum Variance Distortionless Response (MVDR) ; MUltiple SIgnal Characterization (MUSIC) ; Multiple signal classification ; Noise ; Physics ; Recursive ; Support Vector Machine (SVM) ; Support vector machines</subject><ispartof>IEEE transactions on antennas and propagation, 2012-10, Vol.60 (10), p.4901-4910</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</citedby><cites>FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6242388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26544634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El Gonnouni, A.</creatorcontrib><creatorcontrib>Martinez-Ramon, Manel</creatorcontrib><creatorcontrib>Rojo-Alvarez, J. L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Christodoulou, C. G.</creatorcontrib><title>A Support Vector Machine MUSIC Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Arrays</subject><subject>Coherence</subject><subject>Derivation</subject><subject>Direction of arrival (DOA)</subject><subject>Direction of arrival estimation</subject><subject>Distortion</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Minimum Variance Distortionless Response (MVDR)</subject><subject>MUltiple SIgnal Characterization (MUSIC)</subject><subject>Multiple signal classification</subject><subject>Noise</subject><subject>Physics</subject><subject>Recursive</subject><subject>Support Vector Machine (SVM)</subject><subject>Support vector machines</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUx4MoOKd3wUtBhF06k5cfTY9j-GOwobBNvIU0JK6ja2vSHvzvTdnw4OnxeJ_35csHoVuCp4Tg_HEze58CJjAFwDnJ-RkaEc5lCgDkHI0wJjLNQXxeoqsQ9nFlkrERmsySdd-2je-SD2u6xicrbXZlbZPVdr2YJ7Pqq_Fltztcowunq2BvTnOMts9Pm_lrunx7Wcxny9RQzrrUGkcyWTgKOSm0gIzxzHEqCilEwTjEJddUU5rlRJOCS2MwBqljn8JkztExmhxzW9989zZ06lAGY6tK17bpgyKUcMEpz1hE7_-h-6b3dWynohHOmABOI4WPlPFNCN461fryoP1PhNSgTkV1alCnTuriy8MpWAejK-d1bcrw9wdiyKZDgbsjV1pr_84CGFAp6S-L3HMe</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>El Gonnouni, A.</creator><creator>Martinez-Ramon, Manel</creator><creator>Rojo-Alvarez, J. L.</creator><creator>Camps-Valls, G.</creator><creator>Figueiras-Vidal, A. R.</creator><creator>Christodoulou, C. G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121001</creationdate><title>A Support Vector Machine MUSIC Algorithm</title><author>El Gonnouni, A. ; Martinez-Ramon, Manel ; Rojo-Alvarez, J. L. ; Camps-Valls, G. ; Figueiras-Vidal, A. R. ; Christodoulou, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Arrays</topic><topic>Coherence</topic><topic>Derivation</topic><topic>Direction of arrival (DOA)</topic><topic>Direction of arrival estimation</topic><topic>Distortion</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Minimum Variance Distortionless Response (MVDR)</topic><topic>MUltiple SIgnal Characterization (MUSIC)</topic><topic>Multiple signal classification</topic><topic>Noise</topic><topic>Physics</topic><topic>Recursive</topic><topic>Support Vector Machine (SVM)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Gonnouni, A.</creatorcontrib><creatorcontrib>Martinez-Ramon, Manel</creatorcontrib><creatorcontrib>Rojo-Alvarez, J. L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Christodoulou, C. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Gonnouni, A.</au><au>Martinez-Ramon, Manel</au><au>Rojo-Alvarez, J. L.</au><au>Camps-Valls, G.</au><au>Figueiras-Vidal, A. R.</au><au>Christodoulou, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Support Vector Machine MUSIC Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>60</volume><issue>10</issue><spage>4901</spage><epage>4910</epage><pages>4901-4910</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2012.2209195</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2012-10, Vol.60 (10), p.4901-4910
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_1095446253
source IEEE Xplore (Online service)
subjects Algorithms
Antennas
Applied classical electromagnetism
Arrays
Coherence
Derivation
Direction of arrival (DOA)
Direction of arrival estimation
Distortion
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Estimation
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Minimum Variance Distortionless Response (MVDR)
MUltiple SIgnal Characterization (MUSIC)
Multiple signal classification
Noise
Physics
Recursive
Support Vector Machine (SVM)
Support vector machines
title A Support Vector Machine MUSIC Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Support%20Vector%20Machine%20MUSIC%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=El%20Gonnouni,%20A.&rft.date=2012-10-01&rft.volume=60&rft.issue=10&rft.spage=4901&rft.epage=4910&rft.pages=4901-4910&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2012.2209195&rft_dat=%3Cproquest_cross%3E1315653574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-ecf178bf3291ba627457f536b866b4527f59a3a33791a1b58cc0028a014bc7ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1095446253&rft_id=info:pmid/&rft_ieee_id=6242388&rfr_iscdi=true