Loading…

Nanoconfinement induced anomalous water diffusion inside carbon nanotubes

The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanis...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2011-06, Vol.10 (6), p.1359-1364
Main Authors: Ye, Hongfei, Zhang, Hongwu, Zheng, Yonggang, Zhang, Zhongqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23
cites cdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23
container_end_page 1364
container_issue 6
container_start_page 1359
container_title Microfluidics and nanofluidics
container_volume 10
creator Ye, Hongfei
Zhang, Hongwu
Zheng, Yonggang
Zhang, Zhongqiang
description The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.
doi_str_mv 10.1007/s10404-011-0772-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1095621669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785088781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCeFzNZNP8OUrRWih60XPIZhPZ0mZrsov02ztlS_HiJZPJ_N7L8Ai5BfoAlMrHDJRTXlKAkkrJyv0ZmYCAquRa0_PTXbFLcpXzmlIuGdAJWb7Z2Lkuhjb6rY990cZmcL4p8HlrN92Qix_b-1Q0bQhDbruIRG4bXzibauwigv1Q-3xNLoLdZH9zrFPy-fL8MX8tV--L5fxpVbqKi76s0DzMOO6sGh8kr6jGQ3pbgVNMWQ1Kgqh5E0C4RivnmFCgONS6ttKxakruRt9d6r4Hn3uz7oYU8UsDVM8EAyE0UjBSLnU5Jx_MLrVbm_YImUNiZkzMYGLmkJjZo-b-6Gyzs5uQbHRtPgkZZ6jjFXJs5DKO4pdPfzf4z_wX8Lp7rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095621669</pqid></control><display><type>article</type><title>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</title><source>Springer Link</source><creator>Ye, Hongfei ; Zhang, Hongwu ; Zheng, Yonggang ; Zhang, Zhongqiang</creator><creatorcontrib>Ye, Hongfei ; Zhang, Hongwu ; Zheng, Yonggang ; Zhang, Zhongqiang</creatorcontrib><description>The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0772-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion coefficient ; Diffusion in nanoscale solids ; Diffusion in solids ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes ; Physics ; Short Communication ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Microfluidics and nanofluidics, 2011-06, Vol.10 (6), p.1359-1364</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</citedby><cites>FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24200743$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Hongfei</creatorcontrib><creatorcontrib>Zhang, Hongwu</creatorcontrib><creatorcontrib>Zheng, Yonggang</creatorcontrib><creatorcontrib>Zhang, Zhongqiang</creatorcontrib><title>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion coefficient</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Short Communication</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCeFzNZNP8OUrRWih60XPIZhPZ0mZrsov02ztlS_HiJZPJ_N7L8Ai5BfoAlMrHDJRTXlKAkkrJyv0ZmYCAquRa0_PTXbFLcpXzmlIuGdAJWb7Z2Lkuhjb6rY990cZmcL4p8HlrN92Qix_b-1Q0bQhDbruIRG4bXzibauwigv1Q-3xNLoLdZH9zrFPy-fL8MX8tV--L5fxpVbqKi76s0DzMOO6sGh8kr6jGQ3pbgVNMWQ1Kgqh5E0C4RivnmFCgONS6ttKxakruRt9d6r4Hn3uz7oYU8UsDVM8EAyE0UjBSLnU5Jx_MLrVbm_YImUNiZkzMYGLmkJjZo-b-6Gyzs5uQbHRtPgkZZ6jjFXJs5DKO4pdPfzf4z_wX8Lp7rw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Ye, Hongfei</creator><creator>Zhang, Hongwu</creator><creator>Zheng, Yonggang</creator><creator>Zhang, Zhongqiang</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20110601</creationdate><title>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</title><author>Ye, Hongfei ; Zhang, Hongwu ; Zheng, Yonggang ; Zhang, Zhongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion coefficient</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Short Communication</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Hongfei</creatorcontrib><creatorcontrib>Zhang, Hongwu</creatorcontrib><creatorcontrib>Zheng, Yonggang</creatorcontrib><creatorcontrib>Zhang, Zhongqiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Hongfei</au><au>Zhang, Hongwu</au><au>Zheng, Yonggang</au><au>Zhang, Zhongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>10</volume><issue>6</issue><spage>1359</spage><epage>1364</epage><pages>1359-1364</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0772-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2011-06, Vol.10 (6), p.1359-1364
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1095621669
source Springer Link
subjects Analytical Chemistry
Biomedical Engineering and Bioengineering
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Diffusion coefficient
Diffusion in nanoscale solids
Diffusion in solids
Engineering
Engineering Fluid Dynamics
Exact sciences and technology
Materials science
Nanoscale materials and structures: fabrication and characterization
Nanotechnology
Nanotechnology and Microengineering
Nanotubes
Physics
Short Communication
Transport properties of condensed matter (nonelectronic)
title Nanoconfinement induced anomalous water diffusion inside carbon nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoconfinement%20induced%20anomalous%20water%20diffusion%20inside%20carbon%20nanotubes&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Ye,%20Hongfei&rft.date=2011-06-01&rft.volume=10&rft.issue=6&rft.spage=1359&rft.epage=1364&rft.pages=1359-1364&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0772-y&rft_dat=%3Cproquest_cross%3E2785088781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1095621669&rft_id=info:pmid/&rfr_iscdi=true