Loading…
Nanoconfinement induced anomalous water diffusion inside carbon nanotubes
The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanis...
Saved in:
Published in: | Microfluidics and nanofluidics 2011-06, Vol.10 (6), p.1359-1364 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23 |
container_end_page | 1364 |
container_issue | 6 |
container_start_page | 1359 |
container_title | Microfluidics and nanofluidics |
container_volume | 10 |
creator | Ye, Hongfei Zhang, Hongwu Zheng, Yonggang Zhang, Zhongqiang |
description | The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect. |
doi_str_mv | 10.1007/s10404-011-0772-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1095621669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785088781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCeFzNZNP8OUrRWih60XPIZhPZ0mZrsov02ztlS_HiJZPJ_N7L8Ai5BfoAlMrHDJRTXlKAkkrJyv0ZmYCAquRa0_PTXbFLcpXzmlIuGdAJWb7Z2Lkuhjb6rY990cZmcL4p8HlrN92Qix_b-1Q0bQhDbruIRG4bXzibauwigv1Q-3xNLoLdZH9zrFPy-fL8MX8tV--L5fxpVbqKi76s0DzMOO6sGh8kr6jGQ3pbgVNMWQ1Kgqh5E0C4RivnmFCgONS6ttKxakruRt9d6r4Hn3uz7oYU8UsDVM8EAyE0UjBSLnU5Jx_MLrVbm_YImUNiZkzMYGLmkJjZo-b-6Gyzs5uQbHRtPgkZZ6jjFXJs5DKO4pdPfzf4z_wX8Lp7rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095621669</pqid></control><display><type>article</type><title>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</title><source>Springer Link</source><creator>Ye, Hongfei ; Zhang, Hongwu ; Zheng, Yonggang ; Zhang, Zhongqiang</creator><creatorcontrib>Ye, Hongfei ; Zhang, Hongwu ; Zheng, Yonggang ; Zhang, Zhongqiang</creatorcontrib><description>The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0772-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion coefficient ; Diffusion in nanoscale solids ; Diffusion in solids ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes ; Physics ; Short Communication ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Microfluidics and nanofluidics, 2011-06, Vol.10 (6), p.1359-1364</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</citedby><cites>FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24200743$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Hongfei</creatorcontrib><creatorcontrib>Zhang, Hongwu</creatorcontrib><creatorcontrib>Zheng, Yonggang</creatorcontrib><creatorcontrib>Zhang, Zhongqiang</creatorcontrib><title>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion coefficient</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Short Communication</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCeFzNZNP8OUrRWih60XPIZhPZ0mZrsov02ztlS_HiJZPJ_N7L8Ai5BfoAlMrHDJRTXlKAkkrJyv0ZmYCAquRa0_PTXbFLcpXzmlIuGdAJWb7Z2Lkuhjb6rY990cZmcL4p8HlrN92Qix_b-1Q0bQhDbruIRG4bXzibauwigv1Q-3xNLoLdZH9zrFPy-fL8MX8tV--L5fxpVbqKi76s0DzMOO6sGh8kr6jGQ3pbgVNMWQ1Kgqh5E0C4RivnmFCgONS6ttKxakruRt9d6r4Hn3uz7oYU8UsDVM8EAyE0UjBSLnU5Jx_MLrVbm_YImUNiZkzMYGLmkJjZo-b-6Gyzs5uQbHRtPgkZZ6jjFXJs5DKO4pdPfzf4z_wX8Lp7rw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Ye, Hongfei</creator><creator>Zhang, Hongwu</creator><creator>Zheng, Yonggang</creator><creator>Zhang, Zhongqiang</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20110601</creationdate><title>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</title><author>Ye, Hongfei ; Zhang, Hongwu ; Zheng, Yonggang ; Zhang, Zhongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion coefficient</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Short Communication</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Hongfei</creatorcontrib><creatorcontrib>Zhang, Hongwu</creatorcontrib><creatorcontrib>Zheng, Yonggang</creatorcontrib><creatorcontrib>Zhang, Zhongqiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Hongfei</au><au>Zhang, Hongwu</au><au>Zheng, Yonggang</au><au>Zhang, Zhongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoconfinement induced anomalous water diffusion inside carbon nanotubes</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>10</volume><issue>6</issue><spage>1359</spage><epage>1364</epage><pages>1359-1364</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 Å are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 Å follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 Å, the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0772-y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2011-06, Vol.10 (6), p.1359-1364 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1095621669 |
source | Springer Link |
subjects | Analytical Chemistry Biomedical Engineering and Bioengineering Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Diffusion coefficient Diffusion in nanoscale solids Diffusion in solids Engineering Engineering Fluid Dynamics Exact sciences and technology Materials science Nanoscale materials and structures: fabrication and characterization Nanotechnology Nanotechnology and Microengineering Nanotubes Physics Short Communication Transport properties of condensed matter (nonelectronic) |
title | Nanoconfinement induced anomalous water diffusion inside carbon nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoconfinement%20induced%20anomalous%20water%20diffusion%20inside%20carbon%20nanotubes&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Ye,%20Hongfei&rft.date=2011-06-01&rft.volume=10&rft.issue=6&rft.spage=1359&rft.epage=1364&rft.pages=1359-1364&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0772-y&rft_dat=%3Cproquest_cross%3E2785088781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-3cedf540078def743097437ea31c828a918716b4df16cd98cc2681841b9ba7c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1095621669&rft_id=info:pmid/&rfr_iscdi=true |