Loading…
An aptamer-based microfluidic device for thermally controlled affinity extraction
We present a microfluidic device for specific extraction and thermally activated release of analytes using nucleic acid aptamers. The device primarily consists of a microchamber that is packed with aptamer-functionalized microbeads as a stationary phase, and integrated with a micro heater and temper...
Saved in:
Published in: | Microfluidics and nanofluidics 2009-04, Vol.6 (4), p.479-487 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a microfluidic device for specific extraction and thermally activated release of analytes using nucleic acid aptamers. The device primarily consists of a microchamber that is packed with aptamer-functionalized microbeads as a stationary phase, and integrated with a micro heater and temperature sensor. We demonstrate the device operation by performing the extraction of a metabolic analyte, adenosine monophosphate coupled with thiazole orange (TO-AMP), with high selectivity to an RNA aptamer. Controlled release of TO-AMP from the aptamer surface is then conducted at low temperatures using on-chip thermal activation. This allows isocratic analyte elution, which eliminates the use of potentially harsh reagents, and enables efficient regeneration of the aptamer surfaces when device reusability is desired. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-008-0322-4 |