Loading…

Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels

Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher re...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2010-07, Vol.9 (1), p.131-144
Main Authors: de Loos, S. R. A., van der Schaaf, J., Tiggelaar, R. M., Nijhuis, T. A., de Croon, M. H. J. M., Schouten, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743
cites cdi_FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743
container_end_page 144
container_issue 1
container_start_page 131
container_title Microfluidics and nanofluidics
container_volume 9
creator de Loos, S. R. A.
van der Schaaf, J.
Tiggelaar, R. M.
Nijhuis, T. A.
de Croon, M. H. J. M.
Schouten, J. C.
description Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reactions.
doi_str_mv 10.1007/s10404-009-0525-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112399748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790646481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhhdRsFYfwFtAPK5mkuxucpSiVSgIUs9hNputW7bZNtlFevMdfEOfxJSW4sXTzDD__8_wJck10DugtLgPQAUVKaUqpRnLUn6SjCAHngql6Omxl-w8uQhhSakoGNBRMp9i-Pn6bpvN0FSk2jpcNSYQ7EnbfZI3u3VdWwXihlVpfSCNI-umbdHbinhrenSLIU4kmnxHzAc6Z9twmZzV2AZ7dajj5P3pcT55Tmev05fJwyw1XKo-BSMtoGVYWim4FZmkUCiQNSolFC2RYcVLVtWKVznUIPMCa5NDyQxWRSH4OLnZ5659txls6PWyG7yLJzUAMK5UIWRUwV4VXwzB21qvfbNCv9VA9Q6e3sPTEZ7ewdM8em4PyRgMtrVHZ5pwNDKmKMukijq214W4cgvr_3zwb_gvA_iAJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112399748</pqid></control><display><type>article</type><title>Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels</title><source>Springer Link</source><creator>de Loos, S. R. A. ; van der Schaaf, J. ; Tiggelaar, R. M. ; Nijhuis, T. A. ; de Croon, M. H. J. M. ; Schouten, J. C.</creator><creatorcontrib>de Loos, S. R. A. ; van der Schaaf, J. ; Tiggelaar, R. M. ; Nijhuis, T. A. ; de Croon, M. H. J. M. ; Schouten, J. C.</creatorcontrib><description>Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reactions.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-009-0525-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Catalysis ; Chemistry ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Mass transfer ; Nanotechnology and Microengineering ; Physics ; Reactors ; Research Paper ; Studies ; Surface area ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Microfluidics and nanofluidics, 2010-07, Vol.9 (1), p.131-144</ispartof><rights>The Author(s) 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743</citedby><cites>FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22902589$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Loos, S. R. A.</creatorcontrib><creatorcontrib>van der Schaaf, J.</creatorcontrib><creatorcontrib>Tiggelaar, R. M.</creatorcontrib><creatorcontrib>Nijhuis, T. A.</creatorcontrib><creatorcontrib>de Croon, M. H. J. M.</creatorcontrib><creatorcontrib>Schouten, J. C.</creatorcontrib><title>Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reactions.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Mass transfer</subject><subject>Nanotechnology and Microengineering</subject><subject>Physics</subject><subject>Reactors</subject><subject>Research Paper</subject><subject>Studies</subject><subject>Surface area</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhhdRsFYfwFtAPK5mkuxucpSiVSgIUs9hNputW7bZNtlFevMdfEOfxJSW4sXTzDD__8_wJck10DugtLgPQAUVKaUqpRnLUn6SjCAHngql6Omxl-w8uQhhSakoGNBRMp9i-Pn6bpvN0FSk2jpcNSYQ7EnbfZI3u3VdWwXihlVpfSCNI-umbdHbinhrenSLIU4kmnxHzAc6Z9twmZzV2AZ7dajj5P3pcT55Tmev05fJwyw1XKo-BSMtoGVYWim4FZmkUCiQNSolFC2RYcVLVtWKVznUIPMCa5NDyQxWRSH4OLnZ5659txls6PWyG7yLJzUAMK5UIWRUwV4VXwzB21qvfbNCv9VA9Q6e3sPTEZ7ewdM8em4PyRgMtrVHZ5pwNDKmKMukijq214W4cgvr_3zwb_gvA_iAJA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>de Loos, S. R. A.</creator><creator>van der Schaaf, J.</creator><creator>Tiggelaar, R. M.</creator><creator>Nijhuis, T. A.</creator><creator>de Croon, M. H. J. M.</creator><creator>Schouten, J. C.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20100701</creationdate><title>Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels</title><author>de Loos, S. R. A. ; van der Schaaf, J. ; Tiggelaar, R. M. ; Nijhuis, T. A. ; de Croon, M. H. J. M. ; Schouten, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Mass transfer</topic><topic>Nanotechnology and Microengineering</topic><topic>Physics</topic><topic>Reactors</topic><topic>Research Paper</topic><topic>Studies</topic><topic>Surface area</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Loos, S. R. A.</creatorcontrib><creatorcontrib>van der Schaaf, J.</creatorcontrib><creatorcontrib>Tiggelaar, R. M.</creatorcontrib><creatorcontrib>Nijhuis, T. A.</creatorcontrib><creatorcontrib>de Croon, M. H. J. M.</creatorcontrib><creatorcontrib>Schouten, J. C.</creatorcontrib><collection>SpringerOpen</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Loos, S. R. A.</au><au>van der Schaaf, J.</au><au>Tiggelaar, R. M.</au><au>Nijhuis, T. A.</au><au>de Croon, M. H. J. M.</au><au>Schouten, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>9</volume><issue>1</issue><spage>131</spage><epage>144</epage><pages>131-144</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reactions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-009-0525-3</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2010-07, Vol.9 (1), p.131-144
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1112399748
source Springer Link
subjects Analytical Chemistry
Applied fluid mechanics
Biomedical Engineering and Bioengineering
Catalysis
Chemistry
Engineering
Engineering Fluid Dynamics
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
General and physical chemistry
Mass transfer
Nanotechnology and Microengineering
Physics
Reactors
Research Paper
Studies
Surface area
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%E2%80%93liquid%20dynamics%20at%20low%20Reynolds%20numbers%20in%20pillared%20rectangular%20micro%20channels&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=de%20Loos,%20S.%20R.%20A.&rft.date=2010-07-01&rft.volume=9&rft.issue=1&rft.spage=131&rft.epage=144&rft.pages=131-144&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-009-0525-3&rft_dat=%3Cproquest_cross%3E2790646481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-1c8e1ae2abe843e458017918fa99490ba2ad3b2df93d61f1867afc61b2cad7743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1112399748&rft_id=info:pmid/&rfr_iscdi=true