Loading…

Protective effect of [omega]-3 polyunsaturated fatty acids (PUFAs) on sodium nitroprusside-induced nephrotoxicity and oxidative damage in rat kidney

Sodium nitroprusside (SNP) a nitric oxide (NO) donor has proven toxic effects. Dietary ω-3 polyunsaturated fatty acid (PUFA) has been shown to reduce the severity of numerous ailments. Present study examined whether intake of fish oil (FO)/flaxseed oil (FXO, Omega Nutrition, St Vancouver, Canada) wo...

Full description

Saved in:
Bibliographic Details
Published in:Human & experimental toxicology 2012-10, Vol.31 (10), p.1035
Main Authors: Khan, MW, Priyamvada, S, Khan, SA, Khan, S, Naqshbandi, A, Yusufi, ANK
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sodium nitroprusside (SNP) a nitric oxide (NO) donor has proven toxic effects. Dietary ω-3 polyunsaturated fatty acid (PUFA) has been shown to reduce the severity of numerous ailments. Present study examined whether intake of fish oil (FO)/flaxseed oil (FXO, Omega Nutrition, St Vancouver, Canada) would have protective effect against SNP-induced toxicity. Male Wistar rats (150 ± 10 g) were used in this study. Initially animals were divided into two groups: one fed on normal diet and the other on 15% FO/FXO for 15 days. On the 16th day, SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days daily. After 7 days animals were killed, kidneys were harvested for further analysis. SNP induced nephrotoxicity by increasing serum creatinine and blood urea nitrogen, SNP significantly decreased malate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and malic enzyme but increased lactate dehydrogenase and glucose-6-phosphate dehydrogenase. Brush border membrane enzymes such as alkaline phosphatase, γ-glutamyl transpeptidase and leucine amino peptidase were also decreased. The activity of catalase and glutathione peroxidase decreased concomitantly with increased lipid peroxidation, indicating that the significant kidney damage has been inflicted by SNP. Feeding of FO and FXO with SNP ameliorated the changes in various parameters caused by SNP. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing SNP-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. [PUBLICATION ABSTRACT]
ISSN:0960-3271
1477-0903
DOI:10.1177/0960327112444475