Loading…

Synthesis of mixed metallic nanoparticles by spark discharge

Short spark discharges (2 μs) were successfully applied to generate mixed particles a few nanometres in diameter by fast quenching. Alloyed Cr–Co electrodes were applied to demonstrate this. Further it was shown that if the anode and the cathode are different materials, the discharge process mixes t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2009-07, Vol.11 (5), p.1209-1218
Main Authors: Tabrizi, N. S., Xu, Q., van der Pers, N. M., Lafont, U., Schmidt-Ott, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Short spark discharges (2 μs) were successfully applied to generate mixed particles a few nanometres in diameter by fast quenching. Alloyed Cr–Co electrodes were applied to demonstrate this. Further it was shown that if the anode and the cathode are different materials, the discharge process mixes the vapour of both materials, forming mixed nanoparticles. Electron microscopy (TEM, SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were performed on the collected particles to study their size, morphology, composition and structure. The average compositions of the particles were measured by inductively coupled plasma (ICP). In addition, online measurements of the particle size distribution by mobility analysis were carried out. In the case of alloyed electrodes (Cr–Co), the relative concentration of the elements in the nanoparticulate sample was consistent with the electrode composition. When using electrodes of different metals (Au–Pd and Ag–Pd) the individual nanoparticles showed a range of mixing ratios. No surface segregation was observed in these mixed noble metal particles. Crystalline nanoparticulate mixed phases were found in all cases.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-008-9568-8