Loading…
Titanium Dioxide Nanoparticles Produced in Water-in-oil Emulsion
Titanium dioxide (titania) particles were prepared by a water-in-oil emulsion system, and studied for the photodecomposition property of methylene blue. Microemulsion (ME) consisted of water, cyclohexane or octane, and surfactant, such as polyoxyethylene (10) octylphenyl ether (TX-100), polyoxyethyl...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2001-06, Vol.3 (2-3), p.219 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Titanium dioxide (titania) particles were prepared by a water-in-oil emulsion system, and studied for the photodecomposition property of methylene blue. Microemulsion (ME) consisted of water, cyclohexane or octane, and surfactant, such as polyoxyethylene (10) octylphenyl ether (TX-100), polyoxyethylene lauryl ether, or bis (2-ethylhexyl) sodium sulfosuccinate. Titanium tetraisopropoxide (TTIP) was dropped into the ME solution and then titania particles were formed by the hydrolysis reaction between TTIP in the organic solvent and the water in the core of ME. It was found that ME could be classified to the reversed micelle (RM) region and the swelling reversed micelle (SM) region according to the water content. The water droplets in RM were almost monodispersed, where the water content was small. On the other hand, the water droplets in SM had a size distribution, although most of the water molecules associated with surfactant molecules. The size of the particles prepared in the RM region was smaller than the ME size. In contrast, the size of the particles formed in the SM region was larger than the ME size, and coagulation of the particles was observed within a few hours. The smallest diameter of the particles was 2 nm in the system of cyclohexane with TX-100 surfactant when the molar ratio of water to surfactant was 2. Titania particles prepared in this condition were collected as amorphous powder, and converted to anatase phase at less than 500 K, which is lower than the ordinal phase transition temperature. These anatase phase titania particles only showed a significant photodecomposition of methylene blue by illumination with a Xenon lamp.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1023/A:1017920823963 |