Loading…
Kinetic stability of hematite nanoparticles: the effect of particle sizes
Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2008-02, Vol.10 (2), p.321-332 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943 |
container_end_page | 332 |
container_issue | 2 |
container_start_page | 321 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 10 |
creator | He, Y. Thomas Wan, Jiamin Tokunaga, Tetsu |
description | Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(±2), 32(±3), and 65(±3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior. |
doi_str_mv | 10.1007/s11051-007-9255-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112818784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792050211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A62huZvJyJ8VHseBGwV1IZ27slHamJumi_nozjIIbV_fA-c65cAi5BHYNjKmbCMAE0Cyp4UJQOCITEIpTbeT7cdal1pQpWZ2SsxjXjIHkhk_I_LntMLV1EZNbtps2HYreFyvcutQmLDrX9TsXMrDBeFukFRboPdZpoH6NIrZfGM_JiXebiBc_d0reHu5fZ0908fI4n90taF1qnqjxqIRrloIjW6IRVSlK5ErJEpREV9V1U8oGGqZZPTDZkL5iRgohNDdVOSVXY-8u9J97jMmu-33o8ksLAFyDVnqgYKTq0McY0NtdaLcuHCwwOyxmx8XsIIfFLOQMHzMxs90Hhj_N_4a-ATPpbSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112818784</pqid></control><display><type>article</type><title>Kinetic stability of hematite nanoparticles: the effect of particle sizes</title><source>Springer Nature</source><creator>He, Y. Thomas ; Wan, Jiamin ; Tokunaga, Tetsu</creator><creatorcontrib>He, Y. Thomas ; Wan, Jiamin ; Tokunaga, Tetsu</creatorcontrib><description>Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(±2), 32(±3), and 65(±3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-007-9255-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atoms & subatomic particles ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Particle size ; Photonics ; Physical Chemistry ; Redox reactions ; Research Paper</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2008-02, Vol.10 (2), p.321-332</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943</citedby><cites>FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>He, Y. Thomas</creatorcontrib><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Tokunaga, Tetsu</creatorcontrib><title>Kinetic stability of hematite nanoparticles: the effect of particle sizes</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(±2), 32(±3), and 65(±3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior.</description><subject>Atoms & subatomic particles</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Particle size</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Redox reactions</subject><subject>Research Paper</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2A62huZvJyJ8VHseBGwV1IZ27slHamJumi_nozjIIbV_fA-c65cAi5BHYNjKmbCMAE0Cyp4UJQOCITEIpTbeT7cdal1pQpWZ2SsxjXjIHkhk_I_LntMLV1EZNbtps2HYreFyvcutQmLDrX9TsXMrDBeFukFRboPdZpoH6NIrZfGM_JiXebiBc_d0reHu5fZ0908fI4n90taF1qnqjxqIRrloIjW6IRVSlK5ErJEpREV9V1U8oGGqZZPTDZkL5iRgohNDdVOSVXY-8u9J97jMmu-33o8ksLAFyDVnqgYKTq0McY0NtdaLcuHCwwOyxmx8XsIIfFLOQMHzMxs90Hhj_N_4a-ATPpbSU</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>He, Y. Thomas</creator><creator>Wan, Jiamin</creator><creator>Tokunaga, Tetsu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20080201</creationdate><title>Kinetic stability of hematite nanoparticles: the effect of particle sizes</title><author>He, Y. Thomas ; Wan, Jiamin ; Tokunaga, Tetsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atoms & subatomic particles</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Particle size</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Redox reactions</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Y. Thomas</creatorcontrib><creatorcontrib>Wan, Jiamin</creatorcontrib><creatorcontrib>Tokunaga, Tetsu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Y. Thomas</au><au>Wan, Jiamin</au><au>Tokunaga, Tetsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic stability of hematite nanoparticles: the effect of particle sizes</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>10</volume><issue>2</issue><spage>321</spage><epage>332</epage><pages>321-332</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(±2), 32(±3), and 65(±3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-007-9255-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2008-02, Vol.10 (2), p.321-332 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_1112818784 |
source | Springer Nature |
subjects | Atoms & subatomic particles Characterization and Evaluation of Materials Chemistry and Materials Science Inorganic Chemistry Lasers Materials Science Nanoparticles Nanotechnology Optical Devices Optics Particle size Photonics Physical Chemistry Redox reactions Research Paper |
title | Kinetic stability of hematite nanoparticles: the effect of particle sizes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20stability%20of%20hematite%20nanoparticles:%20the%20effect%20of%20particle%20sizes&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=He,%20Y.%20Thomas&rft.date=2008-02-01&rft.volume=10&rft.issue=2&rft.spage=321&rft.epage=332&rft.pages=321-332&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-007-9255-1&rft_dat=%3Cproquest_cross%3E2792050211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-9fe75adb52e0be954353e27763176ea4ccd36d1d080c52e07636f409655582943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1112818784&rft_id=info:pmid/&rfr_iscdi=true |