Loading…

The Linearized Alternating Direction Method of Multipliers for Dantzig Selector

The Dantzig selector was recently proposed to perform variable selection and model fitting in the linear regression model. It can be solved numerically by the alternating direction method of multipliers (ADM); and in this paper, we show that the application of ADM to the Dantzig selector can be spee...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on scientific computing 2012-01, Vol.34 (5), p.A2792-A2811
Main Authors: Wang, Xiangfeng, Yuan, Xiaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173
cites cdi_FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173
container_end_page A2811
container_issue 5
container_start_page A2792
container_title SIAM journal on scientific computing
container_volume 34
creator Wang, Xiangfeng
Yuan, Xiaoming
description The Dantzig selector was recently proposed to perform variable selection and model fitting in the linear regression model. It can be solved numerically by the alternating direction method of multipliers (ADM); and in this paper, we show that the application of ADM to the Dantzig selector can be speeded up significantly if one of its resulting subproblems at each iteration is linearized. The resulting linearized ADM for the Dantzig selector is shown to be efficient for solving both synthetic and real world data sets. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/110833543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1115565433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800952381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqUw8A8sMTEE3ovjOBmrli-pVQfKHLnOc-sqxMV2B_rrSQViunc4uro6jN0iPCAK9YgIlRCyEGdshFDLTGGtzk-9LLIqV_KSXcW4A8CyqPMRW662xOeuJx3ckVo-6RKFXifXb_jMBTLJ-Z4vKG19y73li0OX3L5zFCK3PvCZ7tPRbfg7dQPrwzW7sLqLdPOXY_bx_LSavmbz5cvbdDLPjMhFytYSwFBe5BLNujLDHapNLUFqQKskCEkgoSQrClCyrVvbVrquECtthEIlxuzud3cf_NeBYmp2_jAc72KDiFKWgwIxUPe_lAk-xkC22Qf3qcN3g9CcfDX_vsQP-URbLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115565433</pqid></control><display><type>article</type><title>The Linearized Alternating Direction Method of Multipliers for Dantzig Selector</title><source>SIAM Journals Online</source><source>ABI/INFORM global</source><creator>Wang, Xiangfeng ; Yuan, Xiaoming</creator><creatorcontrib>Wang, Xiangfeng ; Yuan, Xiaoming</creatorcontrib><description>The Dantzig selector was recently proposed to perform variable selection and model fitting in the linear regression model. It can be solved numerically by the alternating direction method of multipliers (ADM); and in this paper, we show that the application of ADM to the Dantzig selector can be speeded up significantly if one of its resulting subproblems at each iteration is linearized. The resulting linearized ADM for the Dantzig selector is shown to be efficient for solving both synthetic and real world data sets. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/110833543</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Feature selection ; Fourier transforms ; Lagrange multiplier ; Linear programming ; Regression analysis ; Variables</subject><ispartof>SIAM journal on scientific computing, 2012-01, Vol.34 (5), p.A2792-A2811</ispartof><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173</citedby><cites>FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1115565433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Wang, Xiangfeng</creatorcontrib><creatorcontrib>Yuan, Xiaoming</creatorcontrib><title>The Linearized Alternating Direction Method of Multipliers for Dantzig Selector</title><title>SIAM journal on scientific computing</title><description>The Dantzig selector was recently proposed to perform variable selection and model fitting in the linear regression model. It can be solved numerically by the alternating direction method of multipliers (ADM); and in this paper, we show that the application of ADM to the Dantzig selector can be speeded up significantly if one of its resulting subproblems at each iteration is linearized. The resulting linearized ADM for the Dantzig selector is shown to be efficient for solving both synthetic and real world data sets. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Feature selection</subject><subject>Fourier transforms</subject><subject>Lagrange multiplier</subject><subject>Linear programming</subject><subject>Regression analysis</subject><subject>Variables</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kD1PwzAURS0EEqUw8A8sMTEE3ovjOBmrli-pVQfKHLnOc-sqxMV2B_rrSQViunc4uro6jN0iPCAK9YgIlRCyEGdshFDLTGGtzk-9LLIqV_KSXcW4A8CyqPMRW662xOeuJx3ckVo-6RKFXifXb_jMBTLJ-Z4vKG19y73li0OX3L5zFCK3PvCZ7tPRbfg7dQPrwzW7sLqLdPOXY_bx_LSavmbz5cvbdDLPjMhFytYSwFBe5BLNujLDHapNLUFqQKskCEkgoSQrClCyrVvbVrquECtthEIlxuzud3cf_NeBYmp2_jAc72KDiFKWgwIxUPe_lAk-xkC22Qf3qcN3g9CcfDX_vsQP-URbLA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Wang, Xiangfeng</creator><creator>Yuan, Xiaoming</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>The Linearized Alternating Direction Method of Multipliers for Dantzig Selector</title><author>Wang, Xiangfeng ; Yuan, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Feature selection</topic><topic>Fourier transforms</topic><topic>Lagrange multiplier</topic><topic>Linear programming</topic><topic>Regression analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiangfeng</creatorcontrib><creatorcontrib>Yuan, Xiaoming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiangfeng</au><au>Yuan, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Linearized Alternating Direction Method of Multipliers for Dantzig Selector</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>34</volume><issue>5</issue><spage>A2792</spage><epage>A2811</epage><pages>A2792-A2811</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>The Dantzig selector was recently proposed to perform variable selection and model fitting in the linear regression model. It can be solved numerically by the alternating direction method of multipliers (ADM); and in this paper, we show that the application of ADM to the Dantzig selector can be speeded up significantly if one of its resulting subproblems at each iteration is linearized. The resulting linearized ADM for the Dantzig selector is shown to be efficient for solving both synthetic and real world data sets. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110833543</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2012-01, Vol.34 (5), p.A2792-A2811
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_1115565433
source SIAM Journals Online; ABI/INFORM global
subjects Algorithms
Applied mathematics
Feature selection
Fourier transforms
Lagrange multiplier
Linear programming
Regression analysis
Variables
title The Linearized Alternating Direction Method of Multipliers for Dantzig Selector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Linearized%20Alternating%20Direction%20Method%20of%20Multipliers%20for%20Dantzig%20Selector&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Wang,%20Xiangfeng&rft.date=2012-01-01&rft.volume=34&rft.issue=5&rft.spage=A2792&rft.epage=A2811&rft.pages=A2792-A2811&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/110833543&rft_dat=%3Cproquest_cross%3E2800952381%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-b500ce24251cb8c001e9c9505a01f75035e0506ef34075d9dfd8a98118ac37173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1115565433&rft_id=info:pmid/&rfr_iscdi=true