Loading…

Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids

DC microgrids are gaining popularity due to high efficiency, high reliability, and easy interconnection of renewable sources as compared to the ac system. Control objectives of dc microgrid are: 1) to ensure equal load sharing (in per unit) among sources; and 2) to maintain low-voltage regulation of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2013-04, Vol.28 (4), p.1900-1913
Main Authors: Anand, Sandeep, Fernandes, Baylon G., Guerrero, Josep
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DC microgrids are gaining popularity due to high efficiency, high reliability, and easy interconnection of renewable sources as compared to the ac system. Control objectives of dc microgrid are: 1) to ensure equal load sharing (in per unit) among sources; and 2) to maintain low-voltage regulation of the system. Conventional droop controllers are not effective in achieving both the aforementioned objectives simultaneously. Reasons for this are identified to be the error in nominal voltages and load distribution. Though centralized controller achieves these objectives, it requires high-speed communication and offers less reliability due to single point of failure. To address these limitations, this paper proposes a new decentralized controller for dc microgrid. Key advantages are high reliability, low-voltage regulation, and equal load sharing, utilizing low-bandwidth communication. To evaluate the dynamic performance, mathematical model of the scheme is derived. Stability of the system is evaluated by eigenvalue analysis. The effectiveness of the scheme is verified through a detailed simulation study. To confirm the viability of the scheme, experimental studies are carried out on a laboratory prototype developed for this purpose. Controller area network protocol is utilized to achieve communication between the sources.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2012.2215055