Loading…
Model and simulation of exascale communication networks
Exascale supercomputers will have millions or even hundreds of millions of processing cores and the potential for nearly billion-way parallelism. Exascale compute and data storage architectures will be critically dependent on the interconnection network. The most popular interconnection network for...
Saved in:
Published in: | Journal of simulation : JOS 2012-11, Vol.6 (4), p.227-236 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3 |
container_end_page | 236 |
container_issue | 4 |
container_start_page | 227 |
container_title | Journal of simulation : JOS |
container_volume | 6 |
creator | Liu, N Carothers, C Cope, J Carns, P Ross, R |
description | Exascale supercomputers will have millions or even hundreds of millions of processing cores and the potential for nearly billion-way parallelism. Exascale compute and data storage architectures will be critically dependent on the interconnection network. The most popular interconnection network for current and future supercomputer systems is the torus (eg, k-ary, n-cube). This paper focuses on the modelling and simulation of ultra-large-scale torus networks using Rensselaer's Optimistic Simulator System. We compare real communication delays between our model and the actual torus network from Blue Gene/L using 2048 processors. Our performance experiments demonstrate the ability to simulate million-node to billion-node torus networks. The torus network model for a 16-million-node configuration shows a high degree of strong scaling when going from 1024 cores to 32 768 cores on Blue Gene/L, with a peak event-rate of nearly 5 billion events per second. We also demonstrate the performance of our torus network model configured with 1 billion nodes on both Blue Gene/L and Blue Gene/P systems. The observed best event rate at 128 K cores is 12.36 billion per second on Blue Gene/P. |
doi_str_mv | 10.1057/jos.2012.4 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1133590511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807607691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3</originalsourceid><addsrcrecordid>eNptkEFLxDAQhYMouK5e_AUFb0pr0jSd7lEWV4UVL3oOaTKVrm2yJi26_94sFfGwpxlmvveGeYRcMpoxKuB240KWU5ZnxRGZMSggBajK478eqlNyFsKG0jJS1YzAszPYJcqaJLT92KmhdTZxTYLfKmjVYaJd34-21dPG4vDl_Ec4JyeN6gJe_NY5eVvdvy4f0_XLw9Pybp1qXlZDWgKUgIUWYHJdKcRacABTiVKgMnldM1UYZmpBGSAwQWHBmYqDnKIG3fA5uZp8t959jhgGuXGjt_GkZIxzsaAi1jm5nijtXQgeG7n1ba_8TjIq98FEVZD7YGQR4ZsJDhGy7-j_WR6ixUS3tnG-V_H7zshB7TrnG6-sboPkB3Q_Y2t3GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1133590511</pqid></control><display><type>article</type><title>Model and simulation of exascale communication networks</title><source>ABI/INFORM Global</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Liu, N ; Carothers, C ; Cope, J ; Carns, P ; Ross, R</creator><creatorcontrib>Liu, N ; Carothers, C ; Cope, J ; Carns, P ; Ross, R</creatorcontrib><description>Exascale supercomputers will have millions or even hundreds of millions of processing cores and the potential for nearly billion-way parallelism. Exascale compute and data storage architectures will be critically dependent on the interconnection network. The most popular interconnection network for current and future supercomputer systems is the torus (eg, k-ary, n-cube). This paper focuses on the modelling and simulation of ultra-large-scale torus networks using Rensselaer's Optimistic Simulator System. We compare real communication delays between our model and the actual torus network from Blue Gene/L using 2048 processors. Our performance experiments demonstrate the ability to simulate million-node to billion-node torus networks. The torus network model for a 16-million-node configuration shows a high degree of strong scaling when going from 1024 cores to 32 768 cores on Blue Gene/L, with a peak event-rate of nearly 5 billion events per second. We also demonstrate the performance of our torus network model configured with 1 billion nodes on both Blue Gene/L and Blue Gene/P systems. The observed best event rate at 128 K cores is 12.36 billion per second on Blue Gene/P.</description><identifier>ISSN: 1747-7778</identifier><identifier>EISSN: 1747-7786</identifier><identifier>DOI: 10.1057/jos.2012.4</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Algorithms ; Alliances ; Business and Management ; Co-design ; discrete-event model ; exascale ; Information Systems and Communication Service ; Operations Research/Decision Theory ; parallel discrete-event simulation ; Simulation ; Simulation and Modeling ; Supercomputers ; torus network ; Traffic congestion</subject><ispartof>Journal of simulation : JOS, 2012-11, Vol.6 (4), p.227-236</ispartof><rights>Copyright © 2012, Operational Research Society 2012</rights><rights>Operational Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3</citedby><cites>FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1133590511/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1133590511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml></links><search><creatorcontrib>Liu, N</creatorcontrib><creatorcontrib>Carothers, C</creatorcontrib><creatorcontrib>Cope, J</creatorcontrib><creatorcontrib>Carns, P</creatorcontrib><creatorcontrib>Ross, R</creatorcontrib><title>Model and simulation of exascale communication networks</title><title>Journal of simulation : JOS</title><addtitle>J Simulation</addtitle><description>Exascale supercomputers will have millions or even hundreds of millions of processing cores and the potential for nearly billion-way parallelism. Exascale compute and data storage architectures will be critically dependent on the interconnection network. The most popular interconnection network for current and future supercomputer systems is the torus (eg, k-ary, n-cube). This paper focuses on the modelling and simulation of ultra-large-scale torus networks using Rensselaer's Optimistic Simulator System. We compare real communication delays between our model and the actual torus network from Blue Gene/L using 2048 processors. Our performance experiments demonstrate the ability to simulate million-node to billion-node torus networks. The torus network model for a 16-million-node configuration shows a high degree of strong scaling when going from 1024 cores to 32 768 cores on Blue Gene/L, with a peak event-rate of nearly 5 billion events per second. We also demonstrate the performance of our torus network model configured with 1 billion nodes on both Blue Gene/L and Blue Gene/P systems. The observed best event rate at 128 K cores is 12.36 billion per second on Blue Gene/P.</description><subject>Algorithms</subject><subject>Alliances</subject><subject>Business and Management</subject><subject>Co-design</subject><subject>discrete-event model</subject><subject>exascale</subject><subject>Information Systems and Communication Service</subject><subject>Operations Research/Decision Theory</subject><subject>parallel discrete-event simulation</subject><subject>Simulation</subject><subject>Simulation and Modeling</subject><subject>Supercomputers</subject><subject>torus network</subject><subject>Traffic congestion</subject><issn>1747-7778</issn><issn>1747-7786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkEFLxDAQhYMouK5e_AUFb0pr0jSd7lEWV4UVL3oOaTKVrm2yJi26_94sFfGwpxlmvveGeYRcMpoxKuB240KWU5ZnxRGZMSggBajK478eqlNyFsKG0jJS1YzAszPYJcqaJLT92KmhdTZxTYLfKmjVYaJd34-21dPG4vDl_Ec4JyeN6gJe_NY5eVvdvy4f0_XLw9Pybp1qXlZDWgKUgIUWYHJdKcRacABTiVKgMnldM1UYZmpBGSAwQWHBmYqDnKIG3fA5uZp8t959jhgGuXGjt_GkZIxzsaAi1jm5nijtXQgeG7n1ba_8TjIq98FEVZD7YGQR4ZsJDhGy7-j_WR6ixUS3tnG-V_H7zshB7TrnG6-sboPkB3Q_Y2t3GA</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Liu, N</creator><creator>Carothers, C</creator><creator>Cope, J</creator><creator>Carns, P</creator><creator>Ross, R</creator><general>Taylor & Francis</general><general>Palgrave Macmillan UK</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20121101</creationdate><title>Model and simulation of exascale communication networks</title><author>Liu, N ; Carothers, C ; Cope, J ; Carns, P ; Ross, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Alliances</topic><topic>Business and Management</topic><topic>Co-design</topic><topic>discrete-event model</topic><topic>exascale</topic><topic>Information Systems and Communication Service</topic><topic>Operations Research/Decision Theory</topic><topic>parallel discrete-event simulation</topic><topic>Simulation</topic><topic>Simulation and Modeling</topic><topic>Supercomputers</topic><topic>torus network</topic><topic>Traffic congestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, N</creatorcontrib><creatorcontrib>Carothers, C</creatorcontrib><creatorcontrib>Cope, J</creatorcontrib><creatorcontrib>Carns, P</creatorcontrib><creatorcontrib>Ross, R</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business (UW System Shared)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of simulation : JOS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, N</au><au>Carothers, C</au><au>Cope, J</au><au>Carns, P</au><au>Ross, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model and simulation of exascale communication networks</atitle><jtitle>Journal of simulation : JOS</jtitle><stitle>J Simulation</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>6</volume><issue>4</issue><spage>227</spage><epage>236</epage><pages>227-236</pages><issn>1747-7778</issn><eissn>1747-7786</eissn><abstract>Exascale supercomputers will have millions or even hundreds of millions of processing cores and the potential for nearly billion-way parallelism. Exascale compute and data storage architectures will be critically dependent on the interconnection network. The most popular interconnection network for current and future supercomputer systems is the torus (eg, k-ary, n-cube). This paper focuses on the modelling and simulation of ultra-large-scale torus networks using Rensselaer's Optimistic Simulator System. We compare real communication delays between our model and the actual torus network from Blue Gene/L using 2048 processors. Our performance experiments demonstrate the ability to simulate million-node to billion-node torus networks. The torus network model for a 16-million-node configuration shows a high degree of strong scaling when going from 1024 cores to 32 768 cores on Blue Gene/L, with a peak event-rate of nearly 5 billion events per second. We also demonstrate the performance of our torus network model configured with 1 billion nodes on both Blue Gene/L and Blue Gene/P systems. The observed best event rate at 128 K cores is 12.36 billion per second on Blue Gene/P.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1057/jos.2012.4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-7778 |
ispartof | Journal of simulation : JOS, 2012-11, Vol.6 (4), p.227-236 |
issn | 1747-7778 1747-7786 |
language | eng |
recordid | cdi_proquest_journals_1133590511 |
source | ABI/INFORM Global; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Algorithms Alliances Business and Management Co-design discrete-event model exascale Information Systems and Communication Service Operations Research/Decision Theory parallel discrete-event simulation Simulation Simulation and Modeling Supercomputers torus network Traffic congestion |
title | Model and simulation of exascale communication networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T13%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20and%20simulation%20of%20exascale%20communication%20networks&rft.jtitle=Journal%20of%20simulation%20:%20JOS&rft.au=Liu,%20N&rft.date=2012-11-01&rft.volume=6&rft.issue=4&rft.spage=227&rft.epage=236&rft.pages=227-236&rft.issn=1747-7778&rft.eissn=1747-7786&rft_id=info:doi/10.1057/jos.2012.4&rft_dat=%3Cproquest_sprin%3E2807607691%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-67767e4c57d2c8aeeb5377d8565ead2bb1a4d1db5017e71507931a1db20ec7cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1133590511&rft_id=info:pmid/&rfr_iscdi=true |