Loading…
Drift-barrier hypothesis and mutation-rate evolution
Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (45), p.18488-18492 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3 |
container_end_page | 18492 |
container_issue | 45 |
container_start_page | 18488 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Sung, Way Ackerman, Matthew S Miller, Samuel F Doak, Thomas G Lynch, Michael |
description | Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ. |
doi_str_mv | 10.1073/pnas.1216223109 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1144342941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41829939</jstor_id><sourcerecordid>41829939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCmRMQiQuXtGN7HNuXSqiUD6kSB-jZchynm1U2XmynUv89jnbZAhdkaSxrnnk949eEvKJwTkHyi91k0zlltGGMU9BPyKpEWjeo4SlZATBZK2R4Qk5T2gCAFgqekxPGQUom2Irgxzj0uW5tjIOP1fphF_LapyFVduqq7ZxtHsJUR5t95e_DOC_HF-RZb8fkXx72M3L76frH1Zf65tvnr1cfbmonNM21FL3lQqLruBKK8q73rQNoPEMnOtu0LZfcWdYzxWnXiVZz9F467dBhg5afkcu97m5ut75zfsrRjmYXh62NDybYwfydmYa1uQv3hqMuC4vA-4NADD9nn7LZDsn5cbSTD3MyVAEHJbUU_0cpcs0Ua5qCvvsH3YQ5TuUlFgo5Mo20UBd7ysWQUvT9sW8KZjHPLOaZR_NKxZs_xz3yv90qQHUAlspHOW1QlFlQqYK83iOblEM8MkgV05ovd7zd53sbjL2LQzK33xnQBoDy8l04_wUidbKL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1144342941</pqid></control><display><type>article</type><title>Drift-barrier hypothesis and mutation-rate evolution</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Sung, Way ; Ackerman, Matthew S ; Miller, Samuel F ; Doak, Thomas G ; Lynch, Michael</creator><creatorcontrib>Sung, Way ; Ackerman, Matthew S ; Miller, Samuel F ; Doak, Thomas G ; Lynch, Michael</creatorcontrib><description>Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216223109</identifier><identifier>PMID: 23077252</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Evolution ; Biological Sciences ; Cell division ; Cell Division - genetics ; Cell lines ; Chlamydomonas reinhardtii - genetics ; Deoxyribonucleic acid ; DNA ; Entomoplasmataceae - genetics ; Eukaryotes ; Eukaryotic cells ; Evolution ; Genetic Drift ; Genetic mutation ; genome ; Genome size ; Genome Size - genetics ; Genome, Bacterial - genetics ; Genome, Plant - genetics ; Genomes ; Models, Genetic ; Mutation ; Mutation Rate ; natural selection ; Nucleotides ; population size ; Prokaryotes ; prokaryotic cells ; Reproductive Isolation ; Sequencing ; Species Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (45), p.18488-18492</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 6, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</citedby><cites>FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41829939$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41829939$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23077252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sung, Way</creatorcontrib><creatorcontrib>Ackerman, Matthew S</creatorcontrib><creatorcontrib>Miller, Samuel F</creatorcontrib><creatorcontrib>Doak, Thomas G</creatorcontrib><creatorcontrib>Lynch, Michael</creatorcontrib><title>Drift-barrier hypothesis and mutation-rate evolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.</description><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>Cell lines</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Entomoplasmataceae - genetics</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Evolution</subject><subject>Genetic Drift</subject><subject>Genetic mutation</subject><subject>genome</subject><subject>Genome size</subject><subject>Genome Size - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>natural selection</subject><subject>Nucleotides</subject><subject>population size</subject><subject>Prokaryotes</subject><subject>prokaryotic cells</subject><subject>Reproductive Isolation</subject><subject>Sequencing</subject><subject>Species Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhi0EotvCmRMQiQuXtGN7HNuXSqiUD6kSB-jZchynm1U2XmynUv89jnbZAhdkaSxrnnk949eEvKJwTkHyi91k0zlltGGMU9BPyKpEWjeo4SlZATBZK2R4Qk5T2gCAFgqekxPGQUom2Irgxzj0uW5tjIOP1fphF_LapyFVduqq7ZxtHsJUR5t95e_DOC_HF-RZb8fkXx72M3L76frH1Zf65tvnr1cfbmonNM21FL3lQqLruBKK8q73rQNoPEMnOtu0LZfcWdYzxWnXiVZz9F467dBhg5afkcu97m5ut75zfsrRjmYXh62NDybYwfydmYa1uQv3hqMuC4vA-4NADD9nn7LZDsn5cbSTD3MyVAEHJbUU_0cpcs0Ua5qCvvsH3YQ5TuUlFgo5Mo20UBd7ysWQUvT9sW8KZjHPLOaZR_NKxZs_xz3yv90qQHUAlspHOW1QlFlQqYK83iOblEM8MkgV05ovd7zd53sbjL2LQzK33xnQBoDy8l04_wUidbKL</recordid><startdate>20121106</startdate><enddate>20121106</enddate><creator>Sung, Way</creator><creator>Ackerman, Matthew S</creator><creator>Miller, Samuel F</creator><creator>Doak, Thomas G</creator><creator>Lynch, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121106</creationdate><title>Drift-barrier hypothesis and mutation-rate evolution</title><author>Sung, Way ; Ackerman, Matthew S ; Miller, Samuel F ; Doak, Thomas G ; Lynch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>Cell lines</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Entomoplasmataceae - genetics</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Evolution</topic><topic>Genetic Drift</topic><topic>Genetic mutation</topic><topic>genome</topic><topic>Genome size</topic><topic>Genome Size - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>natural selection</topic><topic>Nucleotides</topic><topic>population size</topic><topic>Prokaryotes</topic><topic>prokaryotic cells</topic><topic>Reproductive Isolation</topic><topic>Sequencing</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Way</creatorcontrib><creatorcontrib>Ackerman, Matthew S</creatorcontrib><creatorcontrib>Miller, Samuel F</creatorcontrib><creatorcontrib>Doak, Thomas G</creatorcontrib><creatorcontrib>Lynch, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sung, Way</au><au>Ackerman, Matthew S</au><au>Miller, Samuel F</au><au>Doak, Thomas G</au><au>Lynch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift-barrier hypothesis and mutation-rate evolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-06</date><risdate>2012</risdate><volume>109</volume><issue>45</issue><spage>18488</spage><epage>18492</epage><pages>18488-18492</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23077252</pmid><doi>10.1073/pnas.1216223109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (45), p.18488-18492 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1144342941 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Biological Evolution Biological Sciences Cell division Cell Division - genetics Cell lines Chlamydomonas reinhardtii - genetics Deoxyribonucleic acid DNA Entomoplasmataceae - genetics Eukaryotes Eukaryotic cells Evolution Genetic Drift Genetic mutation genome Genome size Genome Size - genetics Genome, Bacterial - genetics Genome, Plant - genetics Genomes Models, Genetic Mutation Mutation Rate natural selection Nucleotides population size Prokaryotes prokaryotic cells Reproductive Isolation Sequencing Species Specificity |
title | Drift-barrier hypothesis and mutation-rate evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift-barrier%20hypothesis%20and%20mutation-rate%20evolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sung,%20Way&rft.date=2012-11-06&rft.volume=109&rft.issue=45&rft.spage=18488&rft.epage=18492&rft.pages=18488-18492&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216223109&rft_dat=%3Cjstor_proqu%3E41829939%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1144342941&rft_id=info:pmid/23077252&rft_jstor_id=41829939&rfr_iscdi=true |