Loading…

Drift-barrier hypothesis and mutation-rate evolution

Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (45), p.18488-18492
Main Authors: Sung, Way, Ackerman, Matthew S, Miller, Samuel F, Doak, Thomas G, Lynch, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3
cites cdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3
container_end_page 18492
container_issue 45
container_start_page 18488
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Sung, Way
Ackerman, Matthew S
Miller, Samuel F
Doak, Thomas G
Lynch, Michael
description Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.
doi_str_mv 10.1073/pnas.1216223109
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1144342941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41829939</jstor_id><sourcerecordid>41829939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCmRMQiQuXtGN7HNuXSqiUD6kSB-jZchynm1U2XmynUv89jnbZAhdkaSxrnnk949eEvKJwTkHyi91k0zlltGGMU9BPyKpEWjeo4SlZATBZK2R4Qk5T2gCAFgqekxPGQUom2Irgxzj0uW5tjIOP1fphF_LapyFVduqq7ZxtHsJUR5t95e_DOC_HF-RZb8fkXx72M3L76frH1Zf65tvnr1cfbmonNM21FL3lQqLruBKK8q73rQNoPEMnOtu0LZfcWdYzxWnXiVZz9F467dBhg5afkcu97m5ut75zfsrRjmYXh62NDybYwfydmYa1uQv3hqMuC4vA-4NADD9nn7LZDsn5cbSTD3MyVAEHJbUU_0cpcs0Ua5qCvvsH3YQ5TuUlFgo5Mo20UBd7ysWQUvT9sW8KZjHPLOaZR_NKxZs_xz3yv90qQHUAlspHOW1QlFlQqYK83iOblEM8MkgV05ovd7zd53sbjL2LQzK33xnQBoDy8l04_wUidbKL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1144342941</pqid></control><display><type>article</type><title>Drift-barrier hypothesis and mutation-rate evolution</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Sung, Way ; Ackerman, Matthew S ; Miller, Samuel F ; Doak, Thomas G ; Lynch, Michael</creator><creatorcontrib>Sung, Way ; Ackerman, Matthew S ; Miller, Samuel F ; Doak, Thomas G ; Lynch, Michael</creatorcontrib><description>Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216223109</identifier><identifier>PMID: 23077252</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Evolution ; Biological Sciences ; Cell division ; Cell Division - genetics ; Cell lines ; Chlamydomonas reinhardtii - genetics ; Deoxyribonucleic acid ; DNA ; Entomoplasmataceae - genetics ; Eukaryotes ; Eukaryotic cells ; Evolution ; Genetic Drift ; Genetic mutation ; genome ; Genome size ; Genome Size - genetics ; Genome, Bacterial - genetics ; Genome, Plant - genetics ; Genomes ; Models, Genetic ; Mutation ; Mutation Rate ; natural selection ; Nucleotides ; population size ; Prokaryotes ; prokaryotic cells ; Reproductive Isolation ; Sequencing ; Species Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (45), p.18488-18492</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 6, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</citedby><cites>FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41829939$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41829939$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23077252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sung, Way</creatorcontrib><creatorcontrib>Ackerman, Matthew S</creatorcontrib><creatorcontrib>Miller, Samuel F</creatorcontrib><creatorcontrib>Doak, Thomas G</creatorcontrib><creatorcontrib>Lynch, Michael</creatorcontrib><title>Drift-barrier hypothesis and mutation-rate evolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.</description><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>Cell lines</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Entomoplasmataceae - genetics</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Evolution</subject><subject>Genetic Drift</subject><subject>Genetic mutation</subject><subject>genome</subject><subject>Genome size</subject><subject>Genome Size - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>natural selection</subject><subject>Nucleotides</subject><subject>population size</subject><subject>Prokaryotes</subject><subject>prokaryotic cells</subject><subject>Reproductive Isolation</subject><subject>Sequencing</subject><subject>Species Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhi0EotvCmRMQiQuXtGN7HNuXSqiUD6kSB-jZchynm1U2XmynUv89jnbZAhdkaSxrnnk949eEvKJwTkHyi91k0zlltGGMU9BPyKpEWjeo4SlZATBZK2R4Qk5T2gCAFgqekxPGQUom2Irgxzj0uW5tjIOP1fphF_LapyFVduqq7ZxtHsJUR5t95e_DOC_HF-RZb8fkXx72M3L76frH1Zf65tvnr1cfbmonNM21FL3lQqLruBKK8q73rQNoPEMnOtu0LZfcWdYzxWnXiVZz9F467dBhg5afkcu97m5ut75zfsrRjmYXh62NDybYwfydmYa1uQv3hqMuC4vA-4NADD9nn7LZDsn5cbSTD3MyVAEHJbUU_0cpcs0Ua5qCvvsH3YQ5TuUlFgo5Mo20UBd7ysWQUvT9sW8KZjHPLOaZR_NKxZs_xz3yv90qQHUAlspHOW1QlFlQqYK83iOblEM8MkgV05ovd7zd53sbjL2LQzK33xnQBoDy8l04_wUidbKL</recordid><startdate>20121106</startdate><enddate>20121106</enddate><creator>Sung, Way</creator><creator>Ackerman, Matthew S</creator><creator>Miller, Samuel F</creator><creator>Doak, Thomas G</creator><creator>Lynch, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121106</creationdate><title>Drift-barrier hypothesis and mutation-rate evolution</title><author>Sung, Way ; Ackerman, Matthew S ; Miller, Samuel F ; Doak, Thomas G ; Lynch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>Cell lines</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Entomoplasmataceae - genetics</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Evolution</topic><topic>Genetic Drift</topic><topic>Genetic mutation</topic><topic>genome</topic><topic>Genome size</topic><topic>Genome Size - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>natural selection</topic><topic>Nucleotides</topic><topic>population size</topic><topic>Prokaryotes</topic><topic>prokaryotic cells</topic><topic>Reproductive Isolation</topic><topic>Sequencing</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Way</creatorcontrib><creatorcontrib>Ackerman, Matthew S</creatorcontrib><creatorcontrib>Miller, Samuel F</creatorcontrib><creatorcontrib>Doak, Thomas G</creatorcontrib><creatorcontrib>Lynch, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sung, Way</au><au>Ackerman, Matthew S</au><au>Miller, Samuel F</au><au>Doak, Thomas G</au><au>Lynch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift-barrier hypothesis and mutation-rate evolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-06</date><risdate>2012</risdate><volume>109</volume><issue>45</issue><spage>18488</spage><epage>18492</epage><pages>18488-18492</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N ₑ), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N ₑ appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N ₑ.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23077252</pmid><doi>10.1073/pnas.1216223109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (45), p.18488-18492
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1144342941
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Biological Evolution
Biological Sciences
Cell division
Cell Division - genetics
Cell lines
Chlamydomonas reinhardtii - genetics
Deoxyribonucleic acid
DNA
Entomoplasmataceae - genetics
Eukaryotes
Eukaryotic cells
Evolution
Genetic Drift
Genetic mutation
genome
Genome size
Genome Size - genetics
Genome, Bacterial - genetics
Genome, Plant - genetics
Genomes
Models, Genetic
Mutation
Mutation Rate
natural selection
Nucleotides
population size
Prokaryotes
prokaryotic cells
Reproductive Isolation
Sequencing
Species Specificity
title Drift-barrier hypothesis and mutation-rate evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift-barrier%20hypothesis%20and%20mutation-rate%20evolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sung,%20Way&rft.date=2012-11-06&rft.volume=109&rft.issue=45&rft.spage=18488&rft.epage=18492&rft.pages=18488-18492&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216223109&rft_dat=%3Cjstor_proqu%3E41829939%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-75fa3574cd385813dfebc006e24c5da6bb373ca2f2831dd5b934ee7c9c4c464a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1144342941&rft_id=info:pmid/23077252&rft_jstor_id=41829939&rfr_iscdi=true