Loading…
Simultaneous, accurate measurement of the 3D position and orientation of single molecules
Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the e...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (47), p.19087-19092 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73 |
container_end_page | 19092 |
container_issue | 47 |
container_start_page | 19087 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Backlund, Mikael P Lew, Matthew D Backer, Adam S Sahl, Steffen J Grover, Ginni Agrawal, Anurag Piestun, Rafael Moerner, W. E |
description | Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). |
doi_str_mv | 10.1073/pnas.1216687109 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1180943367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830166</jstor_id><sourcerecordid>41830166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhzAmwxJW0M_5MLkiofEqVOJQeOFmOY2-zSuLFTpD473HYZQsXj6z3m_dGM4Q8R7hA0PxyP9l8gQyVqjVC84BsyouVEg08JBsApqtaMHFGnuS8A4BG1vCYnDGOrFECNuT7TT8uw2wnH5f8hlrnlmRnT0dv85L86KeZxkDnO0_5e7qPuZ_7OFE7dTSmvqj2z78guZ-2Q2mMg3fL4PNT8ijYIftnx3pObj9--Hb1ubr--unL1bvrykkm58o2rRQQdOiE6tC13jIElK3nDLm03qLSnCstGe8667nmwXkvnUIMgbean5O3B9_90o6-c2WmZAezT_1o0y8TbW_-V6b-zmzjT8MllmWJYvD6aJDij8Xn2ezikqYys0GsV6LEF-ryQLkUc04-nBIQzHoLs97C3N-idLz8d7AT_3f5BaBHYO28t2uM0AYbqNfUFwdkl-eYTozAmkMJKvqrgx5sNHab-mxub1iRAJCDQMV_AyhhpGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1180943367</pqid></control><display><type>article</type><title>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Backlund, Mikael P ; Lew, Matthew D ; Backer, Adam S ; Sahl, Steffen J ; Grover, Ginni ; Agrawal, Anurag ; Piestun, Rafael ; Moerner, W. E</creator><creatorcontrib>Backlund, Mikael P ; Lew, Matthew D ; Backer, Adam S ; Sahl, Steffen J ; Grover, Ginni ; Agrawal, Anurag ; Piestun, Rafael ; Moerner, W. E</creatorcontrib><description>Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216687109</identifier><identifier>PMID: 23129640</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>accuracy ; Atoms & subatomic particles ; computer vision ; Diffraction ; digital images ; Estimators ; Fluorescence ; fluorescence microscopy ; Geodetic position ; Imaging ; Measurement ; Microscopes ; Microscopy ; Molecules ; Photons ; Physical Sciences ; Polarized light ; Wave diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19087-19092</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</citedby><cites>FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830166$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830166$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23129640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Backlund, Mikael P</creatorcontrib><creatorcontrib>Lew, Matthew D</creatorcontrib><creatorcontrib>Backer, Adam S</creatorcontrib><creatorcontrib>Sahl, Steffen J</creatorcontrib><creatorcontrib>Grover, Ginni</creatorcontrib><creatorcontrib>Agrawal, Anurag</creatorcontrib><creatorcontrib>Piestun, Rafael</creatorcontrib><creatorcontrib>Moerner, W. E</creatorcontrib><title>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).</description><subject>accuracy</subject><subject>Atoms & subatomic particles</subject><subject>computer vision</subject><subject>Diffraction</subject><subject>digital images</subject><subject>Estimators</subject><subject>Fluorescence</subject><subject>fluorescence microscopy</subject><subject>Geodetic position</subject><subject>Imaging</subject><subject>Measurement</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Molecules</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Polarized light</subject><subject>Wave diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS0EokvhzAmwxJW0M_5MLkiofEqVOJQeOFmOY2-zSuLFTpD473HYZQsXj6z3m_dGM4Q8R7hA0PxyP9l8gQyVqjVC84BsyouVEg08JBsApqtaMHFGnuS8A4BG1vCYnDGOrFECNuT7TT8uw2wnH5f8hlrnlmRnT0dv85L86KeZxkDnO0_5e7qPuZ_7OFE7dTSmvqj2z78guZ-2Q2mMg3fL4PNT8ijYIftnx3pObj9--Hb1ubr--unL1bvrykkm58o2rRQQdOiE6tC13jIElK3nDLm03qLSnCstGe8667nmwXkvnUIMgbean5O3B9_90o6-c2WmZAezT_1o0y8TbW_-V6b-zmzjT8MllmWJYvD6aJDij8Xn2ezikqYys0GsV6LEF-ryQLkUc04-nBIQzHoLs97C3N-idLz8d7AT_3f5BaBHYO28t2uM0AYbqNfUFwdkl-eYTozAmkMJKvqrgx5sNHab-mxub1iRAJCDQMV_AyhhpGE</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>Backlund, Mikael P</creator><creator>Lew, Matthew D</creator><creator>Backer, Adam S</creator><creator>Sahl, Steffen J</creator><creator>Grover, Ginni</creator><creator>Agrawal, Anurag</creator><creator>Piestun, Rafael</creator><creator>Moerner, W. E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20121120</creationdate><title>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</title><author>Backlund, Mikael P ; Lew, Matthew D ; Backer, Adam S ; Sahl, Steffen J ; Grover, Ginni ; Agrawal, Anurag ; Piestun, Rafael ; Moerner, W. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>accuracy</topic><topic>Atoms & subatomic particles</topic><topic>computer vision</topic><topic>Diffraction</topic><topic>digital images</topic><topic>Estimators</topic><topic>Fluorescence</topic><topic>fluorescence microscopy</topic><topic>Geodetic position</topic><topic>Imaging</topic><topic>Measurement</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Molecules</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Polarized light</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backlund, Mikael P</creatorcontrib><creatorcontrib>Lew, Matthew D</creatorcontrib><creatorcontrib>Backer, Adam S</creatorcontrib><creatorcontrib>Sahl, Steffen J</creatorcontrib><creatorcontrib>Grover, Ginni</creatorcontrib><creatorcontrib>Agrawal, Anurag</creatorcontrib><creatorcontrib>Piestun, Rafael</creatorcontrib><creatorcontrib>Moerner, W. E</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backlund, Mikael P</au><au>Lew, Matthew D</au><au>Backer, Adam S</au><au>Sahl, Steffen J</au><au>Grover, Ginni</au><au>Agrawal, Anurag</au><au>Piestun, Rafael</au><au>Moerner, W. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-20</date><risdate>2012</risdate><volume>109</volume><issue>47</issue><spage>19087</spage><epage>19092</epage><pages>19087-19092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23129640</pmid><doi>10.1073/pnas.1216687109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19087-19092 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1180943367 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | accuracy Atoms & subatomic particles computer vision Diffraction digital images Estimators Fluorescence fluorescence microscopy Geodetic position Imaging Measurement Microscopes Microscopy Molecules Photons Physical Sciences Polarized light Wave diffraction |
title | Simultaneous, accurate measurement of the 3D position and orientation of single molecules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous,%20accurate%20measurement%20of%20the%203D%20position%20and%20orientation%20of%20single%20molecules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Backlund,%20Mikael%20P&rft.date=2012-11-20&rft.volume=109&rft.issue=47&rft.spage=19087&rft.epage=19092&rft.pages=19087-19092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216687109&rft_dat=%3Cjstor_proqu%3E41830166%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1180943367&rft_id=info:pmid/23129640&rft_jstor_id=41830166&rfr_iscdi=true |