Loading…

Simultaneous, accurate measurement of the 3D position and orientation of single molecules

Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the e...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (47), p.19087-19092
Main Authors: Backlund, Mikael P, Lew, Matthew D, Backer, Adam S, Sahl, Steffen J, Grover, Ginni, Agrawal, Anurag, Piestun, Rafael, Moerner, W. E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73
cites cdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73
container_end_page 19092
container_issue 47
container_start_page 19087
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Backlund, Mikael P
Lew, Matthew D
Backer, Adam S
Sahl, Steffen J
Grover, Ginni
Agrawal, Anurag
Piestun, Rafael
Moerner, W. E
description Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).
doi_str_mv 10.1073/pnas.1216687109
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1180943367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830166</jstor_id><sourcerecordid>41830166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhzAmwxJW0M_5MLkiofEqVOJQeOFmOY2-zSuLFTpD473HYZQsXj6z3m_dGM4Q8R7hA0PxyP9l8gQyVqjVC84BsyouVEg08JBsApqtaMHFGnuS8A4BG1vCYnDGOrFECNuT7TT8uw2wnH5f8hlrnlmRnT0dv85L86KeZxkDnO0_5e7qPuZ_7OFE7dTSmvqj2z78guZ-2Q2mMg3fL4PNT8ijYIftnx3pObj9--Hb1ubr--unL1bvrykkm58o2rRQQdOiE6tC13jIElK3nDLm03qLSnCstGe8667nmwXkvnUIMgbean5O3B9_90o6-c2WmZAezT_1o0y8TbW_-V6b-zmzjT8MllmWJYvD6aJDij8Xn2ezikqYys0GsV6LEF-ryQLkUc04-nBIQzHoLs97C3N-idLz8d7AT_3f5BaBHYO28t2uM0AYbqNfUFwdkl-eYTozAmkMJKvqrgx5sNHab-mxub1iRAJCDQMV_AyhhpGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1180943367</pqid></control><display><type>article</type><title>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Backlund, Mikael P ; Lew, Matthew D ; Backer, Adam S ; Sahl, Steffen J ; Grover, Ginni ; Agrawal, Anurag ; Piestun, Rafael ; Moerner, W. E</creator><creatorcontrib>Backlund, Mikael P ; Lew, Matthew D ; Backer, Adam S ; Sahl, Steffen J ; Grover, Ginni ; Agrawal, Anurag ; Piestun, Rafael ; Moerner, W. E</creatorcontrib><description>Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216687109</identifier><identifier>PMID: 23129640</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>accuracy ; Atoms &amp; subatomic particles ; computer vision ; Diffraction ; digital images ; Estimators ; Fluorescence ; fluorescence microscopy ; Geodetic position ; Imaging ; Measurement ; Microscopes ; Microscopy ; Molecules ; Photons ; Physical Sciences ; Polarized light ; Wave diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19087-19092</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</citedby><cites>FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830166$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830166$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23129640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Backlund, Mikael P</creatorcontrib><creatorcontrib>Lew, Matthew D</creatorcontrib><creatorcontrib>Backer, Adam S</creatorcontrib><creatorcontrib>Sahl, Steffen J</creatorcontrib><creatorcontrib>Grover, Ginni</creatorcontrib><creatorcontrib>Agrawal, Anurag</creatorcontrib><creatorcontrib>Piestun, Rafael</creatorcontrib><creatorcontrib>Moerner, W. E</creatorcontrib><title>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).</description><subject>accuracy</subject><subject>Atoms &amp; subatomic particles</subject><subject>computer vision</subject><subject>Diffraction</subject><subject>digital images</subject><subject>Estimators</subject><subject>Fluorescence</subject><subject>fluorescence microscopy</subject><subject>Geodetic position</subject><subject>Imaging</subject><subject>Measurement</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Molecules</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Polarized light</subject><subject>Wave diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS0EokvhzAmwxJW0M_5MLkiofEqVOJQeOFmOY2-zSuLFTpD473HYZQsXj6z3m_dGM4Q8R7hA0PxyP9l8gQyVqjVC84BsyouVEg08JBsApqtaMHFGnuS8A4BG1vCYnDGOrFECNuT7TT8uw2wnH5f8hlrnlmRnT0dv85L86KeZxkDnO0_5e7qPuZ_7OFE7dTSmvqj2z78guZ-2Q2mMg3fL4PNT8ijYIftnx3pObj9--Hb1ubr--unL1bvrykkm58o2rRQQdOiE6tC13jIElK3nDLm03qLSnCstGe8667nmwXkvnUIMgbean5O3B9_90o6-c2WmZAezT_1o0y8TbW_-V6b-zmzjT8MllmWJYvD6aJDij8Xn2ezikqYys0GsV6LEF-ryQLkUc04-nBIQzHoLs97C3N-idLz8d7AT_3f5BaBHYO28t2uM0AYbqNfUFwdkl-eYTozAmkMJKvqrgx5sNHab-mxub1iRAJCDQMV_AyhhpGE</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>Backlund, Mikael P</creator><creator>Lew, Matthew D</creator><creator>Backer, Adam S</creator><creator>Sahl, Steffen J</creator><creator>Grover, Ginni</creator><creator>Agrawal, Anurag</creator><creator>Piestun, Rafael</creator><creator>Moerner, W. E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20121120</creationdate><title>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</title><author>Backlund, Mikael P ; Lew, Matthew D ; Backer, Adam S ; Sahl, Steffen J ; Grover, Ginni ; Agrawal, Anurag ; Piestun, Rafael ; Moerner, W. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>accuracy</topic><topic>Atoms &amp; subatomic particles</topic><topic>computer vision</topic><topic>Diffraction</topic><topic>digital images</topic><topic>Estimators</topic><topic>Fluorescence</topic><topic>fluorescence microscopy</topic><topic>Geodetic position</topic><topic>Imaging</topic><topic>Measurement</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Molecules</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Polarized light</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backlund, Mikael P</creatorcontrib><creatorcontrib>Lew, Matthew D</creatorcontrib><creatorcontrib>Backer, Adam S</creatorcontrib><creatorcontrib>Sahl, Steffen J</creatorcontrib><creatorcontrib>Grover, Ginni</creatorcontrib><creatorcontrib>Agrawal, Anurag</creatorcontrib><creatorcontrib>Piestun, Rafael</creatorcontrib><creatorcontrib>Moerner, W. E</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backlund, Mikael P</au><au>Lew, Matthew D</au><au>Backer, Adam S</au><au>Sahl, Steffen J</au><au>Grover, Ginni</au><au>Agrawal, Anurag</au><au>Piestun, Rafael</au><au>Moerner, W. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous, accurate measurement of the 3D position and orientation of single molecules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-20</date><risdate>2012</risdate><volume>109</volume><issue>47</issue><spage>19087</spage><epage>19092</epage><pages>19087-19092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x , y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23129640</pmid><doi>10.1073/pnas.1216687109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19087-19092
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1180943367
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects accuracy
Atoms & subatomic particles
computer vision
Diffraction
digital images
Estimators
Fluorescence
fluorescence microscopy
Geodetic position
Imaging
Measurement
Microscopes
Microscopy
Molecules
Photons
Physical Sciences
Polarized light
Wave diffraction
title Simultaneous, accurate measurement of the 3D position and orientation of single molecules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous,%20accurate%20measurement%20of%20the%203D%20position%20and%20orientation%20of%20single%20molecules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Backlund,%20Mikael%20P&rft.date=2012-11-20&rft.volume=109&rft.issue=47&rft.spage=19087&rft.epage=19092&rft.pages=19087-19092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216687109&rft_dat=%3Cjstor_proqu%3E41830166%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-a9b540f7fd46d1cbea21015be32135aea1673367523ddae373fcee5c611ff3b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1180943367&rft_id=info:pmid/23129640&rft_jstor_id=41830166&rfr_iscdi=true