Loading…
Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009
We report multipoint observations of daytime tweek atmospherics during the solar eclipse of 22 July 2009. Sixteen and sixty‐three tweek atmospherics were observed at Moshiri and Kagoshima, Japan, where the magnitudes of the solar eclipse were 0.458 and 0.966, respectively. This was the first observa...
Saved in:
Published in: | Journal of Geophysical Research: Space Physics 2012-11, Vol.117 (A11), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report multipoint observations of daytime tweek atmospherics during the solar eclipse of 22 July 2009. Sixteen and sixty‐three tweek atmospherics were observed at Moshiri and Kagoshima, Japan, where the magnitudes of the solar eclipse were 0.458 and 0.966, respectively. This was the first observation of tweek atmospherics during a low‐magnitude eclipse (0.458). The average and standard deviation of the reflection height were 94.9 ± 13.7 km at Moshiri and 87.2 ± 12.9 km at Kagoshima. The reflection height at Moshiri was almost the same as that for normal nighttime conditions in July (96.7 ± 12.6 km) in spite of the low magnitude of the eclipse. The reflection height at Kagoshima seems be divided into two parts: propagation across the total solar eclipse path and propagation in the partial solar eclipse path. During the eclipse, we also observed the phase variation in the LF transmitter signals. The average change in the phase delay of the LF signals was 109° for the paths that crossed the eclipse path and 27° for the paths that did not cross the eclipse path. Assuming a normal daytime height for LF waves of 65 km, a ray tracing analysis indicates that the variations in phase correspond to a height increase of 5–6 km for the paths across the eclipse and 1–2 km for partial eclipse paths. The wide range of estimated tweek reflection heights at Kagoshima also suggests a difference in electron density in the lower ionosphere between total and partial solar eclipses.
Key Points
The first observation of tweeks during a low‐magnitude eclipse (0.458)
LF increase of 5‐6 km for paths across eclipse and 1‐2 km for partial eclipse
Tweek heights suggest electron density between total and partial eclipses |
---|---|
ISSN: | 0148-0227 2169-9380 2156-2202 2169-9402 |
DOI: | 10.1029/2012JA018151 |