Loading…
Steady symmetric low-Reynolds-number flow past a film-coated cylinder
In this study, we examine a steady two-dimensional slow flow past a rigid cylinder coated with a thin layer of immiscible fluid. The Reynolds number for the external bulk flow is assumed small and flow within the film is driven by the action of the bulk fluid’s tangential viscous stress acting at th...
Saved in:
Published in: | European journal of applied mathematics 2013-02, Vol.24 (1), p.1-24 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483 |
container_end_page | 24 |
container_issue | 1 |
container_start_page | 1 |
container_title | European journal of applied mathematics |
container_volume | 24 |
creator | BAND, L. R. OLIVER, J. M. WATERS, S. L. RILEY, D. S. |
description | In this study, we examine a steady two-dimensional slow flow past a rigid cylinder coated with a thin layer of immiscible fluid. The Reynolds number for the external bulk flow is assumed small and flow within the film is driven by the action of the bulk fluid’s tangential viscous stress acting at the interface. Using double asymptotic expansions based on the bulk fluid’s Reynolds number and the aspect ratio of the film thickness to the cylinder’s radius, we derive the leading- and first-order equations governing the steady-state film dynamics, and obtain analytical solutions, in terms of the film thickness, for the bulk flow. We solve the governing film equations, finding that solutions feature a drained region. We briefly discuss the influence of the Capillary number and fluid viscosities, and conclude by showing how the presence of the film affects the drag on the film-coated cylinder. |
doi_str_mv | 10.1017/S0956792512000289 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1238102912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792512000289</cupid><sourcerecordid>2841028711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMoWFc_gLeA5-hLXto0R1lWV1gQXD2XNEmlS_-ZdJF-e7vsHgTxNDDzfvNgCLnlcM-Bq4ct6DRTWqRcAIDI9RlJuMw0k1Kk5yQ5xOyQX5KrGHcAHEHphKy2ozduonFqWz-G2tKm_2Zvfur6xkXW7dvSB1rNJh1MHKmhVd20zPZm9I7aqak758M1uahME_3NSRfk42n1vlyzzevzy_JxwyxyNTIrU0SPGSgQqMu8lKpCZYXMRalnr5RZ6mSFBmTGITUOpDHSWETps1zmuCB3x94h9F97H8di1-9DN78suMCcg9CzLgg_XtnQxxh8VQyhbk2YCg7FYa3iz1ozgyfGtGWo3af_Vf0v9QPdR2o-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238102912</pqid></control><display><type>article</type><title>Steady symmetric low-Reynolds-number flow past a film-coated cylinder</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>BAND, L. R. ; OLIVER, J. M. ; WATERS, S. L. ; RILEY, D. S.</creator><creatorcontrib>BAND, L. R. ; OLIVER, J. M. ; WATERS, S. L. ; RILEY, D. S.</creatorcontrib><description>In this study, we examine a steady two-dimensional slow flow past a rigid cylinder coated with a thin layer of immiscible fluid. The Reynolds number for the external bulk flow is assumed small and flow within the film is driven by the action of the bulk fluid’s tangential viscous stress acting at the interface. Using double asymptotic expansions based on the bulk fluid’s Reynolds number and the aspect ratio of the film thickness to the cylinder’s radius, we derive the leading- and first-order equations governing the steady-state film dynamics, and obtain analytical solutions, in terms of the film thickness, for the bulk flow. We solve the governing film equations, finding that solutions feature a drained region. We briefly discuss the influence of the Capillary number and fluid viscosities, and conclude by showing how the presence of the film affects the drag on the film-coated cylinder.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792512000289</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Fluid mechanics ; Reynolds number ; Thin films</subject><ispartof>European journal of applied mathematics, 2013-02, Vol.24 (1), p.1-24</ispartof><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483</citedby><cites>FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792512000289/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,72707</link.rule.ids></links><search><creatorcontrib>BAND, L. R.</creatorcontrib><creatorcontrib>OLIVER, J. M.</creatorcontrib><creatorcontrib>WATERS, S. L.</creatorcontrib><creatorcontrib>RILEY, D. S.</creatorcontrib><title>Steady symmetric low-Reynolds-number flow past a film-coated cylinder</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>In this study, we examine a steady two-dimensional slow flow past a rigid cylinder coated with a thin layer of immiscible fluid. The Reynolds number for the external bulk flow is assumed small and flow within the film is driven by the action of the bulk fluid’s tangential viscous stress acting at the interface. Using double asymptotic expansions based on the bulk fluid’s Reynolds number and the aspect ratio of the film thickness to the cylinder’s radius, we derive the leading- and first-order equations governing the steady-state film dynamics, and obtain analytical solutions, in terms of the film thickness, for the bulk flow. We solve the governing film equations, finding that solutions feature a drained region. We briefly discuss the influence of the Capillary number and fluid viscosities, and conclude by showing how the presence of the film affects the drag on the film-coated cylinder.</description><subject>Applied mathematics</subject><subject>Fluid mechanics</subject><subject>Reynolds number</subject><subject>Thin films</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMoWFc_gLeA5-hLXto0R1lWV1gQXD2XNEmlS_-ZdJF-e7vsHgTxNDDzfvNgCLnlcM-Bq4ct6DRTWqRcAIDI9RlJuMw0k1Kk5yQ5xOyQX5KrGHcAHEHphKy2ozduonFqWz-G2tKm_2Zvfur6xkXW7dvSB1rNJh1MHKmhVd20zPZm9I7aqak758M1uahME_3NSRfk42n1vlyzzevzy_JxwyxyNTIrU0SPGSgQqMu8lKpCZYXMRalnr5RZ6mSFBmTGITUOpDHSWETps1zmuCB3x94h9F97H8di1-9DN78suMCcg9CzLgg_XtnQxxh8VQyhbk2YCg7FYa3iz1ozgyfGtGWo3af_Vf0v9QPdR2o-</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>BAND, L. R.</creator><creator>OLIVER, J. M.</creator><creator>WATERS, S. L.</creator><creator>RILEY, D. S.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>201302</creationdate><title>Steady symmetric low-Reynolds-number flow past a film-coated cylinder</title><author>BAND, L. R. ; OLIVER, J. M. ; WATERS, S. L. ; RILEY, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>Fluid mechanics</topic><topic>Reynolds number</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAND, L. R.</creatorcontrib><creatorcontrib>OLIVER, J. M.</creatorcontrib><creatorcontrib>WATERS, S. L.</creatorcontrib><creatorcontrib>RILEY, D. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAND, L. R.</au><au>OLIVER, J. M.</au><au>WATERS, S. L.</au><au>RILEY, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady symmetric low-Reynolds-number flow past a film-coated cylinder</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2013-02</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>In this study, we examine a steady two-dimensional slow flow past a rigid cylinder coated with a thin layer of immiscible fluid. The Reynolds number for the external bulk flow is assumed small and flow within the film is driven by the action of the bulk fluid’s tangential viscous stress acting at the interface. Using double asymptotic expansions based on the bulk fluid’s Reynolds number and the aspect ratio of the film thickness to the cylinder’s radius, we derive the leading- and first-order equations governing the steady-state film dynamics, and obtain analytical solutions, in terms of the film thickness, for the bulk flow. We solve the governing film equations, finding that solutions feature a drained region. We briefly discuss the influence of the Capillary number and fluid viscosities, and conclude by showing how the presence of the film affects the drag on the film-coated cylinder.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792512000289</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2013-02, Vol.24 (1), p.1-24 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_proquest_journals_1238102912 |
source | Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list) |
subjects | Applied mathematics Fluid mechanics Reynolds number Thin films |
title | Steady symmetric low-Reynolds-number flow past a film-coated cylinder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20symmetric%20low-Reynolds-number%20flow%20past%20a%20film-coated%20cylinder&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=BAND,%20L.%20R.&rft.date=2013-02&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792512000289&rft_dat=%3Cproquest_cross%3E2841028711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-c4533e36070239b8b47f37c2482b9702b465d4f3a046105ad04aa4ac334e68483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1238102912&rft_id=info:pmid/&rft_cupid=10_1017_S0956792512000289&rfr_iscdi=true |