Loading…
Damage profiles of Si (001) surface via Ar cluster beam sputtering
Damage profiles on Si (001) surface via argon gas cluster ion beam sputtering and mono‐atomic argon ion beam sputtering were investigated using medium energy ion scattering. The surface thickness damaged by Ar cluster ion beam sputtering was approximately 10 nm for 20 keV, 6.4 nm for 10 keV, and 4.2...
Saved in:
Published in: | Surface and interface analysis 2013-01, Vol.45 (1), p.150-153 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Damage profiles on Si (001) surface via argon gas cluster ion beam sputtering and mono‐atomic argon ion beam sputtering were investigated using medium energy ion scattering. The surface thickness damaged by Ar cluster ion beam sputtering was approximately 10 nm for 20 keV, 6.4 nm for 10 keV, and 4.2 nm for 5 keV and the composition of the implanted Ar atoms was 0.2 at% for 20 keV and 0.1 at% for both 10 and 5 keV. The surface thickness damaged by Ar ion beam sputtering was approximately 5.3 nm for 1 keV, 8.5 nm for 2 keV, and 12 nm for 3 keV and the maximum Ar concentration of the implanted Ar atoms in the Si substrate was 5.5 at% for 1 keV, 5.8 at% for 2 keV, and 7.8 at% for 3 keV. The depth of the damaged layers after Ar ion sputtering on Si (001) is proportional to the in‐depth distribution of the implanted primary Ar ions. The depth of the damaged layer after the Ar cluster ion beam sputtering did not depend on the implanted Ar atoms because the implanted Ar atoms are negligible. Understanding the details about the damage process via Ar cluster ion beam sputtering can be useful for the practical surface analysis. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0142-2421 1096-9918 |
DOI: | 10.1002/sia.4917 |