Loading…

Damage profiles of Si (001) surface via Ar cluster beam sputtering

Damage profiles on Si (001) surface via argon gas cluster ion beam sputtering and mono‐atomic argon ion beam sputtering were investigated using medium energy ion scattering. The surface thickness damaged by Ar cluster ion beam sputtering was approximately 10 nm for 20 keV, 6.4 nm for 10 keV, and 4.2...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2013-01, Vol.45 (1), p.150-153
Main Authors: Kyoung, Yong Koo, Lee, Hyung Ik, Chung, Jae Gwan, Heo, Sung, Lee, Jae Cheol, Cho, Young Joon, Kang, Hee Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Damage profiles on Si (001) surface via argon gas cluster ion beam sputtering and mono‐atomic argon ion beam sputtering were investigated using medium energy ion scattering. The surface thickness damaged by Ar cluster ion beam sputtering was approximately 10 nm for 20 keV, 6.4 nm for 10 keV, and 4.2 nm for 5 keV and the composition of the implanted Ar atoms was 0.2 at% for 20 keV and 0.1 at% for both 10 and 5 keV. The surface thickness damaged by Ar ion beam sputtering was approximately 5.3 nm for 1 keV, 8.5 nm for 2 keV, and 12 nm for 3 keV and the maximum Ar concentration of the implanted Ar atoms in the Si substrate was 5.5 at% for 1 keV, 5.8 at% for 2 keV, and 7.8 at% for 3 keV. The depth of the damaged layers after Ar ion sputtering on Si (001) is proportional to the in‐depth distribution of the implanted primary Ar ions. The depth of the damaged layer after the Ar cluster ion beam sputtering did not depend on the implanted Ar atoms because the implanted Ar atoms are negligible. Understanding the details about the damage process via Ar cluster ion beam sputtering can be useful for the practical surface analysis. Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
DOI:10.1002/sia.4917