Loading…
A Single-Stage Microinverter Without Using Eletrolytic Capacitors
This paper presents a new microinverter topology that is intended for single-phase grid-connected PV systems. The proposed microinverter topology is based on a flyback converter, where an extra switch is added to separate the decoupling capacitor from the PV Module, which allows for a high voltage a...
Saved in:
Published in: | IEEE transactions on power electronics 2013-06, Vol.28 (6), p.2677-2687 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new microinverter topology that is intended for single-phase grid-connected PV systems. The proposed microinverter topology is based on a flyback converter, where an extra switch is added to separate the decoupling capacitor from the PV Module, which allows for a high voltage and voltage ripples across its terminals. This results in reducing the power decoupling required capacitance. In this manner, long life-time low power density film capacitors can be used instead of life-time limited high power density electrolytic capacitors, resulting in remarkable increase of microinverter's lifespan. The main advantages of the proposed topology are summarized as: 1) eliminating the double-frequency power ripple using a small film capacitor; 2) using long lifetime film capacitors, which will improve the reliability of the inverter; and 3) requiring no additional circuitry to manage the transformer leakage energy. A 100-W microinverter prototype was built to verify the proposed topology. Experimental results show that the proposed topology and its control scheme can realize the power decoupling, while maintaining very good conversion efficiency numbers. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2012.2224886 |