Loading…

Semi-meshless stencil selection for anisotropic point distributions

Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the poin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computational fluid dynamics 2012-10, Vol.26 (9-10), p.463-487
Main Authors: Kennett, D.J., Timme, S., Angulo, J., Badcock, K.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383
cites cdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383
container_end_page 487
container_issue 9-10
container_start_page 463
container_title International journal of computational fluid dynamics
container_volume 26
creator Kennett, D.J.
Timme, S.
Angulo, J.
Badcock, K.J.
description Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.
doi_str_mv 10.1080/10618562.2012.744450
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1242330906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848140791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuC647n5NKmK5HBGwy4cPYhaVPM0DY1ySDz9rZUt67OWXz_uXyE3CJsECTcIxQoRUE3FJBuSs65gDOyQqBVDlSU53NfYD4zl-QqxgMAVFTiimw_bO_y3sbPzsaYxWSH2nVZtJ2tk_ND1vqQ6cFFn4IfXZ2N3g0pa1xMwZnjjMRrctHqLtqb37om--en_fY1372_vG0fd3nNmEh5w03JRWm0BIG0NUKy0kjJCjMdyo1oKkSBNRUUC8tA1G1R0wZNqcu2YZKtyd0ydgz-62hjUgd_DMO0USHllDGooJgovlB18DEG26oxuF6Hk0JQsy31Z0vNttRia4o9LDE3TB_3-tuHrlFJnzof2qAnKVGxfyf8AMV3cDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242330906</pqid></control><display><type>article</type><title>Semi-meshless stencil selection for anisotropic point distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kennett, D.J. ; Timme, S. ; Angulo, J. ; Badcock, K.J.</creator><creatorcontrib>Kennett, D.J. ; Timme, S. ; Angulo, J. ; Badcock, K.J.</creatorcontrib><description>Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.</description><identifier>ISSN: 1061-8562</identifier><identifier>EISSN: 1029-0257</identifier><identifier>DOI: 10.1080/10618562.2012.744450</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Anisotropy ; Euler equations ; Fluid dynamics ; meshless ; moving body ; multibody systems ; Navier-Stokes equations ; Simulation ; stencil selection</subject><ispartof>International journal of computational fluid dynamics, 2012-10, Vol.26 (9-10), p.463-487</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</citedby><cites>FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kennett, D.J.</creatorcontrib><creatorcontrib>Timme, S.</creatorcontrib><creatorcontrib>Angulo, J.</creatorcontrib><creatorcontrib>Badcock, K.J.</creatorcontrib><title>Semi-meshless stencil selection for anisotropic point distributions</title><title>International journal of computational fluid dynamics</title><description>Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.</description><subject>Anisotropy</subject><subject>Euler equations</subject><subject>Fluid dynamics</subject><subject>meshless</subject><subject>moving body</subject><subject>multibody systems</subject><subject>Navier-Stokes equations</subject><subject>Simulation</subject><subject>stencil selection</subject><issn>1061-8562</issn><issn>1029-0257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuC647n5NKmK5HBGwy4cPYhaVPM0DY1ySDz9rZUt67OWXz_uXyE3CJsECTcIxQoRUE3FJBuSs65gDOyQqBVDlSU53NfYD4zl-QqxgMAVFTiimw_bO_y3sbPzsaYxWSH2nVZtJ2tk_ND1vqQ6cFFn4IfXZ2N3g0pa1xMwZnjjMRrctHqLtqb37om--en_fY1372_vG0fd3nNmEh5w03JRWm0BIG0NUKy0kjJCjMdyo1oKkSBNRUUC8tA1G1R0wZNqcu2YZKtyd0ydgz-62hjUgd_DMO0USHllDGooJgovlB18DEG26oxuF6Hk0JQsy31Z0vNttRia4o9LDE3TB_3-tuHrlFJnzof2qAnKVGxfyf8AMV3cDc</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kennett, D.J.</creator><creator>Timme, S.</creator><creator>Angulo, J.</creator><creator>Badcock, K.J.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Semi-meshless stencil selection for anisotropic point distributions</title><author>Kennett, D.J. ; Timme, S. ; Angulo, J. ; Badcock, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anisotropy</topic><topic>Euler equations</topic><topic>Fluid dynamics</topic><topic>meshless</topic><topic>moving body</topic><topic>multibody systems</topic><topic>Navier-Stokes equations</topic><topic>Simulation</topic><topic>stencil selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennett, D.J.</creatorcontrib><creatorcontrib>Timme, S.</creatorcontrib><creatorcontrib>Angulo, J.</creatorcontrib><creatorcontrib>Badcock, K.J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennett, D.J.</au><au>Timme, S.</au><au>Angulo, J.</au><au>Badcock, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-meshless stencil selection for anisotropic point distributions</atitle><jtitle>International journal of computational fluid dynamics</jtitle><date>2012-10</date><risdate>2012</risdate><volume>26</volume><issue>9-10</issue><spage>463</spage><epage>487</epage><pages>463-487</pages><issn>1061-8562</issn><eissn>1029-0257</eissn><abstract>Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10618562.2012.744450</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8562
ispartof International journal of computational fluid dynamics, 2012-10, Vol.26 (9-10), p.463-487
issn 1061-8562
1029-0257
language eng
recordid cdi_proquest_journals_1242330906
source Taylor and Francis Science and Technology Collection
subjects Anisotropy
Euler equations
Fluid dynamics
meshless
moving body
multibody systems
Navier-Stokes equations
Simulation
stencil selection
title Semi-meshless stencil selection for anisotropic point distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-meshless%20stencil%20selection%20for%20anisotropic%20point%20distributions&rft.jtitle=International%20journal%20of%20computational%20fluid%20dynamics&rft.au=Kennett,%20D.J.&rft.date=2012-10&rft.volume=26&rft.issue=9-10&rft.spage=463&rft.epage=487&rft.pages=463-487&rft.issn=1061-8562&rft.eissn=1029-0257&rft_id=info:doi/10.1080/10618562.2012.744450&rft_dat=%3Cproquest_cross%3E2848140791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1242330906&rft_id=info:pmid/&rfr_iscdi=true