Loading…
Semi-meshless stencil selection for anisotropic point distributions
Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the poin...
Saved in:
Published in: | International journal of computational fluid dynamics 2012-10, Vol.26 (9-10), p.463-487 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383 |
container_end_page | 487 |
container_issue | 9-10 |
container_start_page | 463 |
container_title | International journal of computational fluid dynamics |
container_volume | 26 |
creator | Kennett, D.J. Timme, S. Angulo, J. Badcock, K.J. |
description | Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input. |
doi_str_mv | 10.1080/10618562.2012.744450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1242330906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848140791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuC647n5NKmK5HBGwy4cPYhaVPM0DY1ySDz9rZUt67OWXz_uXyE3CJsECTcIxQoRUE3FJBuSs65gDOyQqBVDlSU53NfYD4zl-QqxgMAVFTiimw_bO_y3sbPzsaYxWSH2nVZtJ2tk_ND1vqQ6cFFn4IfXZ2N3g0pa1xMwZnjjMRrctHqLtqb37om--en_fY1372_vG0fd3nNmEh5w03JRWm0BIG0NUKy0kjJCjMdyo1oKkSBNRUUC8tA1G1R0wZNqcu2YZKtyd0ydgz-62hjUgd_DMO0USHllDGooJgovlB18DEG26oxuF6Hk0JQsy31Z0vNttRia4o9LDE3TB_3-tuHrlFJnzof2qAnKVGxfyf8AMV3cDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242330906</pqid></control><display><type>article</type><title>Semi-meshless stencil selection for anisotropic point distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kennett, D.J. ; Timme, S. ; Angulo, J. ; Badcock, K.J.</creator><creatorcontrib>Kennett, D.J. ; Timme, S. ; Angulo, J. ; Badcock, K.J.</creatorcontrib><description>Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.</description><identifier>ISSN: 1061-8562</identifier><identifier>EISSN: 1029-0257</identifier><identifier>DOI: 10.1080/10618562.2012.744450</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Anisotropy ; Euler equations ; Fluid dynamics ; meshless ; moving body ; multibody systems ; Navier-Stokes equations ; Simulation ; stencil selection</subject><ispartof>International journal of computational fluid dynamics, 2012-10, Vol.26 (9-10), p.463-487</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor & Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</citedby><cites>FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kennett, D.J.</creatorcontrib><creatorcontrib>Timme, S.</creatorcontrib><creatorcontrib>Angulo, J.</creatorcontrib><creatorcontrib>Badcock, K.J.</creatorcontrib><title>Semi-meshless stencil selection for anisotropic point distributions</title><title>International journal of computational fluid dynamics</title><description>Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.</description><subject>Anisotropy</subject><subject>Euler equations</subject><subject>Fluid dynamics</subject><subject>meshless</subject><subject>moving body</subject><subject>multibody systems</subject><subject>Navier-Stokes equations</subject><subject>Simulation</subject><subject>stencil selection</subject><issn>1061-8562</issn><issn>1029-0257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuC647n5NKmK5HBGwy4cPYhaVPM0DY1ySDz9rZUt67OWXz_uXyE3CJsECTcIxQoRUE3FJBuSs65gDOyQqBVDlSU53NfYD4zl-QqxgMAVFTiimw_bO_y3sbPzsaYxWSH2nVZtJ2tk_ND1vqQ6cFFn4IfXZ2N3g0pa1xMwZnjjMRrctHqLtqb37om--en_fY1372_vG0fd3nNmEh5w03JRWm0BIG0NUKy0kjJCjMdyo1oKkSBNRUUC8tA1G1R0wZNqcu2YZKtyd0ydgz-62hjUgd_DMO0USHllDGooJgovlB18DEG26oxuF6Hk0JQsy31Z0vNttRia4o9LDE3TB_3-tuHrlFJnzof2qAnKVGxfyf8AMV3cDc</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kennett, D.J.</creator><creator>Timme, S.</creator><creator>Angulo, J.</creator><creator>Badcock, K.J.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Semi-meshless stencil selection for anisotropic point distributions</title><author>Kennett, D.J. ; Timme, S. ; Angulo, J. ; Badcock, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anisotropy</topic><topic>Euler equations</topic><topic>Fluid dynamics</topic><topic>meshless</topic><topic>moving body</topic><topic>multibody systems</topic><topic>Navier-Stokes equations</topic><topic>Simulation</topic><topic>stencil selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennett, D.J.</creatorcontrib><creatorcontrib>Timme, S.</creatorcontrib><creatorcontrib>Angulo, J.</creatorcontrib><creatorcontrib>Badcock, K.J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennett, D.J.</au><au>Timme, S.</au><au>Angulo, J.</au><au>Badcock, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-meshless stencil selection for anisotropic point distributions</atitle><jtitle>International journal of computational fluid dynamics</jtitle><date>2012-10</date><risdate>2012</risdate><volume>26</volume><issue>9-10</issue><spage>463</spage><epage>487</epage><pages>463-487</pages><issn>1061-8562</issn><eissn>1029-0257</eissn><abstract>Meshless methods are attractive for simulating moving body problems. The selection of the stencils over the domain for the meshless solver is crucial for the method to be competitive with established computational fluid dynamics techniques. Stencil selection is relatively straightforward if the point distributions are isotropic in nature, however, this is rarely the case in computations that solve the Navier-Stokes equations. In this paper, a fully automatic method of selecting the stencils from anisotropic point distributions, which are obtained from overlapping structured grids, is outlined. The original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/10618562.2012.744450</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8562 |
ispartof | International journal of computational fluid dynamics, 2012-10, Vol.26 (9-10), p.463-487 |
issn | 1061-8562 1029-0257 |
language | eng |
recordid | cdi_proquest_journals_1242330906 |
source | Taylor and Francis Science and Technology Collection |
subjects | Anisotropy Euler equations Fluid dynamics meshless moving body multibody systems Navier-Stokes equations Simulation stencil selection |
title | Semi-meshless stencil selection for anisotropic point distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-meshless%20stencil%20selection%20for%20anisotropic%20point%20distributions&rft.jtitle=International%20journal%20of%20computational%20fluid%20dynamics&rft.au=Kennett,%20D.J.&rft.date=2012-10&rft.volume=26&rft.issue=9-10&rft.spage=463&rft.epage=487&rft.pages=463-487&rft.issn=1061-8562&rft.eissn=1029-0257&rft_id=info:doi/10.1080/10618562.2012.744450&rft_dat=%3Cproquest_cross%3E2848140791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-d4b7457ba80512fb5837b8836b1024b5d91151c25216e305cf6c2d1b7a7fd383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1242330906&rft_id=info:pmid/&rfr_iscdi=true |