Loading…
Properties of Jeffreys Mixture for Markov Sources
We discuss the properties of Jeffreys mixture for a Markov model. First, we show that a modified Jeffreys mixture asymptotically achieves the minimax coding regret for universal data compression, where we do not put any restriction on data sequences. Moreover, we give an approximation formula for th...
Saved in:
Published in: | IEEE transactions on information theory 2013-01, Vol.59 (1), p.438-457 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193 |
container_end_page | 457 |
container_issue | 1 |
container_start_page | 438 |
container_title | IEEE transactions on information theory |
container_volume | 59 |
creator | Takeuchi, J. Kawabata, T. Barron, A. R. |
description | We discuss the properties of Jeffreys mixture for a Markov model. First, we show that a modified Jeffreys mixture asymptotically achieves the minimax coding regret for universal data compression, where we do not put any restriction on data sequences. Moreover, we give an approximation formula for the prediction probability of Jeffreys mixture for a Markov model. By this formula, it is revealed that the prediction probability by Jeffreys mixture for the Markov model with alphabet {0,1} is not of the form ( nx | s +α)/( ns +β), where nx | s is the number of occurrences of the symbol x following the context s ∈ {0,1} and ns = n 0| s + n 1| s . Moreover, we propose a method to compute our minimax strategy, which is a combination of a Monte Carlo method and the approximation formula, where the former is used for earlier stages in the data, while the latter is used for later stages. |
doi_str_mv | 10.1109/TIT.2012.2219171 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1242476772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6307868</ieee_id><sourcerecordid>1365133895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKt7wc2ACG6m5v1YiviotChY1yGTB0xtm5rMiP33prR04epyud85nHsAuERwhBBUd7PxbIQhwiOMkUICHYEBYkzUijN6DAYQIlkrSuUpOMt5XlbKEB4A9J7i2qeu9bmKoXr1ISS_ydW0_e365KsQUzU16Sv-VB-xT9bnc3ASzCL7i_0cgs-nx9nDSz15ex4_3E9qSxjt6kZKSKAhDjNBeKOoc41hTmDJgiVeBMe8cYw3JEiqnCOBWA5ZgznGhCJFhuB257tO8bv3udPLNlu_WJiVj33WiHCGCJGKFfT6HzovWVclnUaYYiq4ELhQcEfZFHNOPuh1apcmbTSCetuhLh3qbYd632GR3OyNTbZmEZJZ2TYfdFhAUb7cWl_tuNZ7fzhzUs5ckj8_LXfl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242476772</pqid></control><display><type>article</type><title>Properties of Jeffreys Mixture for Markov Sources</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Takeuchi, J. ; Kawabata, T. ; Barron, A. R.</creator><creatorcontrib>Takeuchi, J. ; Kawabata, T. ; Barron, A. R.</creatorcontrib><description>We discuss the properties of Jeffreys mixture for a Markov model. First, we show that a modified Jeffreys mixture asymptotically achieves the minimax coding regret for universal data compression, where we do not put any restriction on data sequences. Moreover, we give an approximation formula for the prediction probability of Jeffreys mixture for a Markov model. By this formula, it is revealed that the prediction probability by Jeffreys mixture for the Markov model with alphabet {0,1} is not of the form ( nx | s +α)/( ns +β), where nx | s is the number of occurrences of the symbol x following the context s ∈ {0,1} and ns = n 0| s + n 1| s . Moreover, we propose a method to compute our minimax strategy, which is a combination of a Monte Carlo method and the approximation formula, where the former is used for earlier stages in the data, while the latter is used for later stages.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2012.2219171</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Approximation methods ; Asymptotic properties ; Bayes code ; Coding, codes ; Context ; Data compression ; Encoding ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Jeffreys prior ; Markov analysis ; Markov models ; Markov processes ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimation ; minimax regret ; Minimax technique ; Monte Carlo simulation ; Probability ; Signal and communications theory ; stochastic complexity ; Strategy ; Telecommunications and information theory ; universal source coding ; Upper bound ; Vectors</subject><ispartof>IEEE transactions on information theory, 2013-01, Vol.59 (1), p.438-457</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193</citedby><cites>FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6307868$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27078032$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeuchi, J.</creatorcontrib><creatorcontrib>Kawabata, T.</creatorcontrib><creatorcontrib>Barron, A. R.</creatorcontrib><title>Properties of Jeffreys Mixture for Markov Sources</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We discuss the properties of Jeffreys mixture for a Markov model. First, we show that a modified Jeffreys mixture asymptotically achieves the minimax coding regret for universal data compression, where we do not put any restriction on data sequences. Moreover, we give an approximation formula for the prediction probability of Jeffreys mixture for a Markov model. By this formula, it is revealed that the prediction probability by Jeffreys mixture for the Markov model with alphabet {0,1} is not of the form ( nx | s +α)/( ns +β), where nx | s is the number of occurrences of the symbol x following the context s ∈ {0,1} and ns = n 0| s + n 1| s . Moreover, we propose a method to compute our minimax strategy, which is a combination of a Monte Carlo method and the approximation formula, where the former is used for earlier stages in the data, while the latter is used for later stages.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Asymptotic properties</subject><subject>Bayes code</subject><subject>Coding, codes</subject><subject>Context</subject><subject>Data compression</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Jeffreys prior</subject><subject>Markov analysis</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>minimax regret</subject><subject>Minimax technique</subject><subject>Monte Carlo simulation</subject><subject>Probability</subject><subject>Signal and communications theory</subject><subject>stochastic complexity</subject><subject>Strategy</subject><subject>Telecommunications and information theory</subject><subject>universal source coding</subject><subject>Upper bound</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKt7wc2ACG6m5v1YiviotChY1yGTB0xtm5rMiP33prR04epyud85nHsAuERwhBBUd7PxbIQhwiOMkUICHYEBYkzUijN6DAYQIlkrSuUpOMt5XlbKEB4A9J7i2qeu9bmKoXr1ISS_ydW0_e365KsQUzU16Sv-VB-xT9bnc3ASzCL7i_0cgs-nx9nDSz15ex4_3E9qSxjt6kZKSKAhDjNBeKOoc41hTmDJgiVeBMe8cYw3JEiqnCOBWA5ZgznGhCJFhuB257tO8bv3udPLNlu_WJiVj33WiHCGCJGKFfT6HzovWVclnUaYYiq4ELhQcEfZFHNOPuh1apcmbTSCetuhLh3qbYd632GR3OyNTbZmEZJZ2TYfdFhAUb7cWl_tuNZ7fzhzUs5ckj8_LXfl</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Takeuchi, J.</creator><creator>Kawabata, T.</creator><creator>Barron, A. R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201301</creationdate><title>Properties of Jeffreys Mixture for Markov Sources</title><author>Takeuchi, J. ; Kawabata, T. ; Barron, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Asymptotic properties</topic><topic>Bayes code</topic><topic>Coding, codes</topic><topic>Context</topic><topic>Data compression</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Jeffreys prior</topic><topic>Markov analysis</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>minimax regret</topic><topic>Minimax technique</topic><topic>Monte Carlo simulation</topic><topic>Probability</topic><topic>Signal and communications theory</topic><topic>stochastic complexity</topic><topic>Strategy</topic><topic>Telecommunications and information theory</topic><topic>universal source coding</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeuchi, J.</creatorcontrib><creatorcontrib>Kawabata, T.</creatorcontrib><creatorcontrib>Barron, A. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeuchi, J.</au><au>Kawabata, T.</au><au>Barron, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Jeffreys Mixture for Markov Sources</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-01</date><risdate>2013</risdate><volume>59</volume><issue>1</issue><spage>438</spage><epage>457</epage><pages>438-457</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We discuss the properties of Jeffreys mixture for a Markov model. First, we show that a modified Jeffreys mixture asymptotically achieves the minimax coding regret for universal data compression, where we do not put any restriction on data sequences. Moreover, we give an approximation formula for the prediction probability of Jeffreys mixture for a Markov model. By this formula, it is revealed that the prediction probability by Jeffreys mixture for the Markov model with alphabet {0,1} is not of the form ( nx | s +α)/( ns +β), where nx | s is the number of occurrences of the symbol x following the context s ∈ {0,1} and ns = n 0| s + n 1| s . Moreover, we propose a method to compute our minimax strategy, which is a combination of a Monte Carlo method and the approximation formula, where the former is used for earlier stages in the data, while the latter is used for later stages.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2012.2219171</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2013-01, Vol.59 (1), p.438-457 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1242476772 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Approximation Approximation methods Asymptotic properties Bayes code Coding, codes Context Data compression Encoding Exact sciences and technology Information theory Information, signal and communications theory Jeffreys prior Markov analysis Markov models Markov processes Mathematical analysis Mathematical models Maximum likelihood estimation minimax regret Minimax technique Monte Carlo simulation Probability Signal and communications theory stochastic complexity Strategy Telecommunications and information theory universal source coding Upper bound Vectors |
title | Properties of Jeffreys Mixture for Markov Sources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Jeffreys%20Mixture%20for%20Markov%20Sources&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Takeuchi,%20J.&rft.date=2013-01&rft.volume=59&rft.issue=1&rft.spage=438&rft.epage=457&rft.pages=438-457&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2012.2219171&rft_dat=%3Cproquest_pasca%3E1365133895%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-b88030a3d25736b94ddba5d7285fc3e7fd5ead56b3f849dd3f3c605b262234193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1242476772&rft_id=info:pmid/&rft_ieee_id=6307868&rfr_iscdi=true |