Loading…

A framework for nonparametric profile monitoring

► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures. Control charts have been wide...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering 2013-01, Vol.64 (1), p.482-491
Main Authors: Chuang, Shih-Chung, Hung, Ying-Chao, Tsai, Wen-Chi, Yang, Su-Fen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823
cites cdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823
container_end_page 491
container_issue 1
container_start_page 482
container_title Computers & industrial engineering
container_volume 64
creator Chuang, Shih-Chung
Hung, Ying-Chao
Tsai, Wen-Chi
Yang, Su-Fen
description ► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures. Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.
doi_str_mv 10.1016/j.cie.2012.08.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1266248793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835212002057</els_id><sourcerecordid>2856334891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFc_gLeC59ZJsk0TPC2L_2DBi55DkiaSum3WpKv47U2pZ08Dj_dm3vwQusZQY8Dstq-NtzUBTGrgNQA7QQXmraigaeAUFUAZVJw25BxdpNQDwLoRuECwKV1Ug_0O8aN0IZZjGA9qVqboTXmIwfm9LYcw-ilEP75fojOn9sle_c0Venu4f90-VbuXx-ftZlcZSpqpUlxwpR0jRljXckoxBi6o4oq2oEWnlZ7bcGKw4x0RHaZGdy3RVFuWZbpCN8veXOHzaNMk-3CMYz4pMWGMrPNzNLvw4jIxpBStk4foBxV_JAY5g5G9zGDkDEYClxlMztwtGZvrf3kbZcqW0djOR2sm2QX_T_oX_8dqPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266248793</pqid></control><display><type>article</type><title>A framework for nonparametric profile monitoring</title><source>ScienceDirect Freedom Collection</source><creator>Chuang, Shih-Chung ; Hung, Ying-Chao ; Tsai, Wen-Chi ; Yang, Su-Fen</creator><creatorcontrib>Chuang, Shih-Chung ; Hung, Ying-Chao ; Tsai, Wen-Chi ; Yang, Su-Fen</creatorcontrib><description>► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures. Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2012.08.006</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>B-spline ; Block bootstrap ; Bootstrap method ; Confidence band ; Control charts ; Curve depth ; Mathematical models ; Nonparametric profile monitoring ; Operations research ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2013-01, Vol.64 (1), p.482-491</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</citedby><cites>FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chuang, Shih-Chung</creatorcontrib><creatorcontrib>Hung, Ying-Chao</creatorcontrib><creatorcontrib>Tsai, Wen-Chi</creatorcontrib><creatorcontrib>Yang, Su-Fen</creatorcontrib><title>A framework for nonparametric profile monitoring</title><title>Computers &amp; industrial engineering</title><description>► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures. Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.</description><subject>B-spline</subject><subject>Block bootstrap</subject><subject>Bootstrap method</subject><subject>Confidence band</subject><subject>Control charts</subject><subject>Curve depth</subject><subject>Mathematical models</subject><subject>Nonparametric profile monitoring</subject><subject>Operations research</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFc_gLeC59ZJsk0TPC2L_2DBi55DkiaSum3WpKv47U2pZ08Dj_dm3vwQusZQY8Dstq-NtzUBTGrgNQA7QQXmraigaeAUFUAZVJw25BxdpNQDwLoRuECwKV1Ug_0O8aN0IZZjGA9qVqboTXmIwfm9LYcw-ilEP75fojOn9sle_c0Venu4f90-VbuXx-ftZlcZSpqpUlxwpR0jRljXckoxBi6o4oq2oEWnlZ7bcGKw4x0RHaZGdy3RVFuWZbpCN8veXOHzaNMk-3CMYz4pMWGMrPNzNLvw4jIxpBStk4foBxV_JAY5g5G9zGDkDEYClxlMztwtGZvrf3kbZcqW0djOR2sm2QX_T_oX_8dqPA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Chuang, Shih-Chung</creator><creator>Hung, Ying-Chao</creator><creator>Tsai, Wen-Chi</creator><creator>Yang, Su-Fen</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>A framework for nonparametric profile monitoring</title><author>Chuang, Shih-Chung ; Hung, Ying-Chao ; Tsai, Wen-Chi ; Yang, Su-Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>B-spline</topic><topic>Block bootstrap</topic><topic>Bootstrap method</topic><topic>Confidence band</topic><topic>Control charts</topic><topic>Curve depth</topic><topic>Mathematical models</topic><topic>Nonparametric profile monitoring</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuang, Shih-Chung</creatorcontrib><creatorcontrib>Hung, Ying-Chao</creatorcontrib><creatorcontrib>Tsai, Wen-Chi</creatorcontrib><creatorcontrib>Yang, Su-Fen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuang, Shih-Chung</au><au>Hung, Ying-Chao</au><au>Tsai, Wen-Chi</au><au>Yang, Su-Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for nonparametric profile monitoring</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2013-01</date><risdate>2013</risdate><volume>64</volume><issue>1</issue><spage>482</spage><epage>491</epage><pages>482-491</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures. Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2012.08.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2013-01, Vol.64 (1), p.482-491
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_journals_1266248793
source ScienceDirect Freedom Collection
subjects B-spline
Block bootstrap
Bootstrap method
Confidence band
Control charts
Curve depth
Mathematical models
Nonparametric profile monitoring
Operations research
Studies
title A framework for nonparametric profile monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20nonparametric%20profile%20monitoring&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Chuang,%20Shih-Chung&rft.date=2013-01&rft.volume=64&rft.issue=1&rft.spage=482&rft.epage=491&rft.pages=482-491&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2012.08.006&rft_dat=%3Cproquest_cross%3E2856334891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266248793&rft_id=info:pmid/&rfr_iscdi=true