Loading…
A framework for nonparametric profile monitoring
► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures. Control charts have been wide...
Saved in:
Published in: | Computers & industrial engineering 2013-01, Vol.64 (1), p.482-491 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823 |
container_end_page | 491 |
container_issue | 1 |
container_start_page | 482 |
container_title | Computers & industrial engineering |
container_volume | 64 |
creator | Chuang, Shih-Chung Hung, Ying-Chao Tsai, Wen-Chi Yang, Su-Fen |
description | ► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures.
Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set. |
doi_str_mv | 10.1016/j.cie.2012.08.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1266248793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835212002057</els_id><sourcerecordid>2856334891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFc_gLeC59ZJsk0TPC2L_2DBi55DkiaSum3WpKv47U2pZ08Dj_dm3vwQusZQY8Dstq-NtzUBTGrgNQA7QQXmraigaeAUFUAZVJw25BxdpNQDwLoRuECwKV1Ug_0O8aN0IZZjGA9qVqboTXmIwfm9LYcw-ilEP75fojOn9sle_c0Venu4f90-VbuXx-ftZlcZSpqpUlxwpR0jRljXckoxBi6o4oq2oEWnlZ7bcGKw4x0RHaZGdy3RVFuWZbpCN8veXOHzaNMk-3CMYz4pMWGMrPNzNLvw4jIxpBStk4foBxV_JAY5g5G9zGDkDEYClxlMztwtGZvrf3kbZcqW0djOR2sm2QX_T_oX_8dqPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266248793</pqid></control><display><type>article</type><title>A framework for nonparametric profile monitoring</title><source>ScienceDirect Freedom Collection</source><creator>Chuang, Shih-Chung ; Hung, Ying-Chao ; Tsai, Wen-Chi ; Yang, Su-Fen</creator><creatorcontrib>Chuang, Shih-Chung ; Hung, Ying-Chao ; Tsai, Wen-Chi ; Yang, Su-Fen</creatorcontrib><description>► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures.
Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2012.08.006</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>B-spline ; Block bootstrap ; Bootstrap method ; Confidence band ; Control charts ; Curve depth ; Mathematical models ; Nonparametric profile monitoring ; Operations research ; Studies</subject><ispartof>Computers & industrial engineering, 2013-01, Vol.64 (1), p.482-491</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</citedby><cites>FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chuang, Shih-Chung</creatorcontrib><creatorcontrib>Hung, Ying-Chao</creatorcontrib><creatorcontrib>Tsai, Wen-Chi</creatorcontrib><creatorcontrib>Yang, Su-Fen</creatorcontrib><title>A framework for nonparametric profile monitoring</title><title>Computers & industrial engineering</title><description>► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures.
Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.</description><subject>B-spline</subject><subject>Block bootstrap</subject><subject>Bootstrap method</subject><subject>Confidence band</subject><subject>Control charts</subject><subject>Curve depth</subject><subject>Mathematical models</subject><subject>Nonparametric profile monitoring</subject><subject>Operations research</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFc_gLeC59ZJsk0TPC2L_2DBi55DkiaSum3WpKv47U2pZ08Dj_dm3vwQusZQY8Dstq-NtzUBTGrgNQA7QQXmraigaeAUFUAZVJw25BxdpNQDwLoRuECwKV1Ug_0O8aN0IZZjGA9qVqboTXmIwfm9LYcw-ilEP75fojOn9sle_c0Venu4f90-VbuXx-ftZlcZSpqpUlxwpR0jRljXckoxBi6o4oq2oEWnlZ7bcGKw4x0RHaZGdy3RVFuWZbpCN8veXOHzaNMk-3CMYz4pMWGMrPNzNLvw4jIxpBStk4foBxV_JAY5g5G9zGDkDEYClxlMztwtGZvrf3kbZcqW0djOR2sm2QX_T_oX_8dqPA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Chuang, Shih-Chung</creator><creator>Hung, Ying-Chao</creator><creator>Tsai, Wen-Chi</creator><creator>Yang, Su-Fen</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>A framework for nonparametric profile monitoring</title><author>Chuang, Shih-Chung ; Hung, Ying-Chao ; Tsai, Wen-Chi ; Yang, Su-Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>B-spline</topic><topic>Block bootstrap</topic><topic>Bootstrap method</topic><topic>Confidence band</topic><topic>Control charts</topic><topic>Curve depth</topic><topic>Mathematical models</topic><topic>Nonparametric profile monitoring</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuang, Shih-Chung</creatorcontrib><creatorcontrib>Hung, Ying-Chao</creatorcontrib><creatorcontrib>Tsai, Wen-Chi</creatorcontrib><creatorcontrib>Yang, Su-Fen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuang, Shih-Chung</au><au>Hung, Ying-Chao</au><au>Tsai, Wen-Chi</au><au>Yang, Su-Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for nonparametric profile monitoring</atitle><jtitle>Computers & industrial engineering</jtitle><date>2013-01</date><risdate>2013</risdate><volume>64</volume><issue>1</issue><spage>482</spage><epage>491</epage><pages>482-491</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>► We propose a framework for monitoring nonparametric profiles. ► The framework is flexible and computationally efficient. ► The dependence structure for the withinprofile observations is accommodated. ► The framework works well in terms of various performance measures.
Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2012.08.006</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2013-01, Vol.64 (1), p.482-491 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_journals_1266248793 |
source | ScienceDirect Freedom Collection |
subjects | B-spline Block bootstrap Bootstrap method Confidence band Control charts Curve depth Mathematical models Nonparametric profile monitoring Operations research Studies |
title | A framework for nonparametric profile monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20nonparametric%20profile%20monitoring&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Chuang,%20Shih-Chung&rft.date=2013-01&rft.volume=64&rft.issue=1&rft.spage=482&rft.epage=491&rft.pages=482-491&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2012.08.006&rft_dat=%3Cproquest_cross%3E2856334891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-a898abf62c9ef7833110893a8a370b9dbab835282c1f8d29d13cbd72b3be62823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266248793&rft_id=info:pmid/&rfr_iscdi=true |