Loading…
Comparison of a Reduced-Order Observer and a Full-Order Observer for Sensorless Synchronous Motor Drives
Two back-electromotive-force-based position observers are compared for motion-sensorless synchronous motor drives: the reduced-order observer and the adaptive full-order observer. A stabilizing gain is proposed for the adaptive full-order observer, which guarantees the local stability of the closed-...
Saved in:
Published in: | IEEE transactions on industry applications 2012-11, Vol.48 (6), p.1959-1967 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two back-electromotive-force-based position observers are compared for motion-sensorless synchronous motor drives: the reduced-order observer and the adaptive full-order observer. A stabilizing gain is proposed for the adaptive full-order observer, which guarantees the local stability of the closed-loop system, if the motor parameters are known. Equations for the steady-state position error and for the linearized estimation-error dynamics under erroneous parameters are derived, and the robustness of the two observers against parameter errors is analyzed and compared. The observers are experimentally evaluated using a 6.7-kW synchronous reluctance motor drive in low-speed operation and under parameter errors. The gain selection of the reduced-order observer is easier, but the adaptive full-order observer can be made more robust against parameter variations and noise. |
---|---|
ISSN: | 0093-9994 1939-9367 1939-9367 |
DOI: | 10.1109/TIA.2012.2226200 |