Loading…

Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution

In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent...

Full description

Saved in:
Bibliographic Details
Published in:Particulate science and technology 2013-01, Vol.31 (1), p.92-99
Main Authors: Jung, Chang H., Kim, Yong P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393
cites cdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393
container_end_page 99
container_issue 1
container_start_page 92
container_title Particulate science and technology
container_volume 31
creator Jung, Chang H.
Kim, Yong P.
description In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).
doi_str_mv 10.1080/02726351.2012.658902
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1270755906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868687181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU7Z-CdxTqiC8iNVcCicLSdxiqvULrYrKHeejBcjaeCKtNJKq29GO4PQeQqTFARcAslJRnk6IZCSScZFAeQAjVLORALAskM06pGkZ47RSQgrAOCckRHSU6vaXTQVXrh2G42zuJv4qvEsRLNWw6XZX76_7DJE79Z49rFxVtuIjcVzt0wenV-rFk-1d8G1eGE-Nb4xHWvKvecpOmpUG_TZ7x6jl9vZ8_V9Mn-6e7iezpOKUh6TUmhgJSFcsEoUta4aqOpMU0ooY0xnGWV1QXhecqYaUbM0V6VmguWKU0ZpQcfoYvDdePe21SHKldv6LmGQKckh57yArKPYQFXdu8HrRm58F9XvZAqyL1T-FSr7QuVQaCe7GmTGNn3ed-fbWka1a51vvLKVCZL-6_ADpYd8yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270755906</pqid></control><display><type>article</type><title>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Jung, Chang H. ; Kim, Yong P.</creator><creatorcontrib>Jung, Chang H. ; Kim, Yong P.</creatorcontrib><description>In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).</description><identifier>ISSN: 0272-6351</identifier><identifier>EISSN: 1548-0046</identifier><identifier>DOI: 10.1080/02726351.2012.658902</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Aerosols ; analytic solution ; Approximation ; Estimating techniques ; extinction coefficient ; harmonic mean ; log-normal size distribution ; Mathematical functions ; polydispersed aerosol ; Sensitivity analysis ; Weights &amp; measures ; Ångstrom exponent</subject><ispartof>Particulate science and technology, 2013-01, Vol.31 (1), p.92-99</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>Copyright Taylor &amp; Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</citedby><cites>FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Jung, Chang H.</creatorcontrib><creatorcontrib>Kim, Yong P.</creatorcontrib><title>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</title><title>Particulate science and technology</title><description>In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).</description><subject>Aerosols</subject><subject>analytic solution</subject><subject>Approximation</subject><subject>Estimating techniques</subject><subject>extinction coefficient</subject><subject>harmonic mean</subject><subject>log-normal size distribution</subject><subject>Mathematical functions</subject><subject>polydispersed aerosol</subject><subject>Sensitivity analysis</subject><subject>Weights &amp; measures</subject><subject>Ångstrom exponent</subject><issn>0272-6351</issn><issn>1548-0046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU7Z-CdxTqiC8iNVcCicLSdxiqvULrYrKHeejBcjaeCKtNJKq29GO4PQeQqTFARcAslJRnk6IZCSScZFAeQAjVLORALAskM06pGkZ47RSQgrAOCckRHSU6vaXTQVXrh2G42zuJv4qvEsRLNWw6XZX76_7DJE79Z49rFxVtuIjcVzt0wenV-rFk-1d8G1eGE-Nb4xHWvKvecpOmpUG_TZ7x6jl9vZ8_V9Mn-6e7iezpOKUh6TUmhgJSFcsEoUta4aqOpMU0ooY0xnGWV1QXhecqYaUbM0V6VmguWKU0ZpQcfoYvDdePe21SHKldv6LmGQKckh57yArKPYQFXdu8HrRm58F9XvZAqyL1T-FSr7QuVQaCe7GmTGNn3ed-fbWka1a51vvLKVCZL-6_ADpYd8yA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jung, Chang H.</creator><creator>Kim, Yong P.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20130101</creationdate><title>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</title><author>Jung, Chang H. ; Kim, Yong P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerosols</topic><topic>analytic solution</topic><topic>Approximation</topic><topic>Estimating techniques</topic><topic>extinction coefficient</topic><topic>harmonic mean</topic><topic>log-normal size distribution</topic><topic>Mathematical functions</topic><topic>polydispersed aerosol</topic><topic>Sensitivity analysis</topic><topic>Weights &amp; measures</topic><topic>Ångstrom exponent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Chang H.</creatorcontrib><creatorcontrib>Kim, Yong P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Particulate science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Chang H.</au><au>Kim, Yong P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</atitle><jtitle>Particulate science and technology</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>31</volume><issue>1</issue><spage>92</spage><epage>99</epage><pages>92-99</pages><issn>0272-6351</issn><eissn>1548-0046</eissn><abstract>In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/02726351.2012.658902</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-6351
ispartof Particulate science and technology, 2013-01, Vol.31 (1), p.92-99
issn 0272-6351
1548-0046
language eng
recordid cdi_proquest_journals_1270755906
source Taylor and Francis Science and Technology Collection
subjects Aerosols
analytic solution
Approximation
Estimating techniques
extinction coefficient
harmonic mean
log-normal size distribution
Mathematical functions
polydispersed aerosol
Sensitivity analysis
Weights & measures
Ångstrom exponent
title Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Solution%20on%20the%20Estimation%20of%20the%20%C3%85ngstrom%20Exponent%20in%20Log-Normal%20Aerosol%20Size%20Distribution&rft.jtitle=Particulate%20science%20and%20technology&rft.au=Jung,%20Chang%20H.&rft.date=2013-01-01&rft.volume=31&rft.issue=1&rft.spage=92&rft.epage=99&rft.pages=92-99&rft.issn=0272-6351&rft.eissn=1548-0046&rft_id=info:doi/10.1080/02726351.2012.658902&rft_dat=%3Cproquest_cross%3E2868687181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1270755906&rft_id=info:pmid/&rfr_iscdi=true