Loading…
Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution
In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent...
Saved in:
Published in: | Particulate science and technology 2013-01, Vol.31 (1), p.92-99 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393 |
container_end_page | 99 |
container_issue | 1 |
container_start_page | 92 |
container_title | Particulate science and technology |
container_volume | 31 |
creator | Jung, Chang H. Kim, Yong P. |
description | In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges). |
doi_str_mv | 10.1080/02726351.2012.658902 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1270755906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868687181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU7Z-CdxTqiC8iNVcCicLSdxiqvULrYrKHeejBcjaeCKtNJKq29GO4PQeQqTFARcAslJRnk6IZCSScZFAeQAjVLORALAskM06pGkZ47RSQgrAOCckRHSU6vaXTQVXrh2G42zuJv4qvEsRLNWw6XZX76_7DJE79Z49rFxVtuIjcVzt0wenV-rFk-1d8G1eGE-Nb4xHWvKvecpOmpUG_TZ7x6jl9vZ8_V9Mn-6e7iezpOKUh6TUmhgJSFcsEoUta4aqOpMU0ooY0xnGWV1QXhecqYaUbM0V6VmguWKU0ZpQcfoYvDdePe21SHKldv6LmGQKckh57yArKPYQFXdu8HrRm58F9XvZAqyL1T-FSr7QuVQaCe7GmTGNn3ed-fbWka1a51vvLKVCZL-6_ADpYd8yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270755906</pqid></control><display><type>article</type><title>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Jung, Chang H. ; Kim, Yong P.</creator><creatorcontrib>Jung, Chang H. ; Kim, Yong P.</creatorcontrib><description>In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).</description><identifier>ISSN: 0272-6351</identifier><identifier>EISSN: 1548-0046</identifier><identifier>DOI: 10.1080/02726351.2012.658902</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Aerosols ; analytic solution ; Approximation ; Estimating techniques ; extinction coefficient ; harmonic mean ; log-normal size distribution ; Mathematical functions ; polydispersed aerosol ; Sensitivity analysis ; Weights & measures ; Ångstrom exponent</subject><ispartof>Particulate science and technology, 2013-01, Vol.31 (1), p.92-99</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>Copyright Taylor & Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</citedby><cites>FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Jung, Chang H.</creatorcontrib><creatorcontrib>Kim, Yong P.</creatorcontrib><title>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</title><title>Particulate science and technology</title><description>In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).</description><subject>Aerosols</subject><subject>analytic solution</subject><subject>Approximation</subject><subject>Estimating techniques</subject><subject>extinction coefficient</subject><subject>harmonic mean</subject><subject>log-normal size distribution</subject><subject>Mathematical functions</subject><subject>polydispersed aerosol</subject><subject>Sensitivity analysis</subject><subject>Weights & measures</subject><subject>Ångstrom exponent</subject><issn>0272-6351</issn><issn>1548-0046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU7Z-CdxTqiC8iNVcCicLSdxiqvULrYrKHeejBcjaeCKtNJKq29GO4PQeQqTFARcAslJRnk6IZCSScZFAeQAjVLORALAskM06pGkZ47RSQgrAOCckRHSU6vaXTQVXrh2G42zuJv4qvEsRLNWw6XZX76_7DJE79Z49rFxVtuIjcVzt0wenV-rFk-1d8G1eGE-Nb4xHWvKvecpOmpUG_TZ7x6jl9vZ8_V9Mn-6e7iezpOKUh6TUmhgJSFcsEoUta4aqOpMU0ooY0xnGWV1QXhecqYaUbM0V6VmguWKU0ZpQcfoYvDdePe21SHKldv6LmGQKckh57yArKPYQFXdu8HrRm58F9XvZAqyL1T-FSr7QuVQaCe7GmTGNn3ed-fbWka1a51vvLKVCZL-6_ADpYd8yA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jung, Chang H.</creator><creator>Kim, Yong P.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20130101</creationdate><title>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</title><author>Jung, Chang H. ; Kim, Yong P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerosols</topic><topic>analytic solution</topic><topic>Approximation</topic><topic>Estimating techniques</topic><topic>extinction coefficient</topic><topic>harmonic mean</topic><topic>log-normal size distribution</topic><topic>Mathematical functions</topic><topic>polydispersed aerosol</topic><topic>Sensitivity analysis</topic><topic>Weights & measures</topic><topic>Ångstrom exponent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Chang H.</creatorcontrib><creatorcontrib>Kim, Yong P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Particulate science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Chang H.</au><au>Kim, Yong P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution</atitle><jtitle>Particulate science and technology</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>31</volume><issue>1</issue><spage>92</spage><epage>99</epage><pages>92-99</pages><issn>0272-6351</issn><eissn>1548-0046</eissn><abstract>In this study, the Ångstrom exponent of the polydispersed aerosol size distribution was theoretically studied. The Ångstrom exponent was represented using a harmonic mean type analytic approximation. A log-normal aerosol size distribution was assumed and a sensitive analysis of the Ångstrom exponent was performed. The change in the Ångstrom exponent was estimated for a range of values of the real and imaginary parts of the refractive index. The result of the approximate analytic solution was comparable with that obtained by numerical integration, although there exists some discrepancy, especially for the intermediate range of particle sizes. Subsequently, this study quantitatively shows how the refractive index and particle size distribution are crucial in estimating the Ångstrom exponent, and that an analytic type approximation can be applied for the estimation of the Ångstrom exponent, especially for the limiting ranges of particle size (i.e., for the Rayleigh and geometric mean dominant size ranges).</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/02726351.2012.658902</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-6351 |
ispartof | Particulate science and technology, 2013-01, Vol.31 (1), p.92-99 |
issn | 0272-6351 1548-0046 |
language | eng |
recordid | cdi_proquest_journals_1270755906 |
source | Taylor and Francis Science and Technology Collection |
subjects | Aerosols analytic solution Approximation Estimating techniques extinction coefficient harmonic mean log-normal size distribution Mathematical functions polydispersed aerosol Sensitivity analysis Weights & measures Ångstrom exponent |
title | Analytic Solution on the Estimation of the Ångstrom Exponent in Log-Normal Aerosol Size Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Solution%20on%20the%20Estimation%20of%20the%20%C3%85ngstrom%20Exponent%20in%20Log-Normal%20Aerosol%20Size%20Distribution&rft.jtitle=Particulate%20science%20and%20technology&rft.au=Jung,%20Chang%20H.&rft.date=2013-01-01&rft.volume=31&rft.issue=1&rft.spage=92&rft.epage=99&rft.pages=92-99&rft.issn=0272-6351&rft.eissn=1548-0046&rft_id=info:doi/10.1080/02726351.2012.658902&rft_dat=%3Cproquest_cross%3E2868687181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-b8e04b22584c89decf0cd6e3323444e6634d9257b54af8d417abe4847a5343393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1270755906&rft_id=info:pmid/&rfr_iscdi=true |