Loading…

Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control

This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole targe...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2013-02, Vol.69 (2), p.150-155
Main Authors: Cools, Hans J, Fraaije, Bart A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413
cites cdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413
container_end_page 155
container_issue 2
container_start_page 150
container_title Pest management science
container_volume 69
creator Cools, Hans J
Fraaije, Bart A
description This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry
doi_str_mv 10.1002/ps.3348
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1281854733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875269871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</originalsourceid><addsrcrecordid>eNp10U1v1DAQBmALgWgpiH8AljhwQCn-yto-VhW0SAsUlRWoF2vi2K2XxA52Ilh-Pamy7I3TzOHRO9I7CD2n5JQSwt4O5ZRzoR6gY1qzVSW0Vg8Pu_p-hJ6UsiWEaK3ZY3TEmOSEEnGMtpuhhdHhFHHv7B3EUPqCk8fwJ3UOZ1dCGSFah0PEH3c2leEOXHZdB_g2Qx9isGneIbY49EMXLIwhxYJ9ythP45QdtimOOXVP0SMPXXHP9vMEbd6_-3p-Wa0_X3w4P1tXVhCpqpq1nklLeCMtX62cooTWra5bIRtqOUDrqW40bZi3XAhBAZTVTVMrZwkIyk_QqyV3yOnn5MpotmnKcT5pKFNU1UJyPqvXi7I5lZKdN0MOPeSdocTcd2qGYu47neWLfd7U9K49uH8lzuDNAn6Fzu3-l2Ourvdx1aLnYt3vg4b8w6wkl7X59unC3NRXXy7XqjY3s3-5eA_JwG0OxWyuGaFifqfURBD-F3JdmNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1281854733</pqid></control><display><type>article</type><title>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cools, Hans J ; Fraaije, Bart A</creator><creatorcontrib>Cools, Hans J ; Fraaije, Bart A</creatorcontrib><description>This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.3348</identifier><identifier>PMID: 22730104</identifier><identifier>CODEN: PMSCFC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amino acids ; Ascomycota - drug effects ; Ascomycota - enzymology ; Ascomycota - genetics ; Ascomycota - metabolism ; Azoles - pharmacology ; Bacteria ; Correlation analysis ; CYP51 ; Drug Resistance, Fungal ; enzyme activity ; Enzymes ; evolution ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; fungicide resistance ; fungicides ; Fungicides, Industrial - pharmacology ; Genotype &amp; phenotype ; leaf blotch ; mechanisms ; Mycosphaerella graminicola ; pathogens ; Pesticides ; phenotype ; selection response ; Septoria ; Septoria leaf blotch ; Sterol 14-Demethylase - genetics ; Sterol 14-Demethylase - metabolism ; triazole ; triazoles</subject><ispartof>Pest management science, 2013-02, Vol.69 (2), p.150-155</ispartof><rights>Copyright © 2012 Society of Chemical Industry</rights><rights>Copyright © 2012 Society of Chemical Industry.</rights><rights>Copyright John Wiley and Sons, Limited Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</citedby><cites>FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22730104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cools, Hans J</creatorcontrib><creatorcontrib>Fraaije, Bart A</creatorcontrib><title>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</title><title>Pest management science</title><addtitle>Pest. Manag. Sci</addtitle><description>This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry</description><subject>Amino acids</subject><subject>Ascomycota - drug effects</subject><subject>Ascomycota - enzymology</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - metabolism</subject><subject>Azoles - pharmacology</subject><subject>Bacteria</subject><subject>Correlation analysis</subject><subject>CYP51</subject><subject>Drug Resistance, Fungal</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>evolution</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>fungicide resistance</subject><subject>fungicides</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Genotype &amp; phenotype</subject><subject>leaf blotch</subject><subject>mechanisms</subject><subject>Mycosphaerella graminicola</subject><subject>pathogens</subject><subject>Pesticides</subject><subject>phenotype</subject><subject>selection response</subject><subject>Septoria</subject><subject>Septoria leaf blotch</subject><subject>Sterol 14-Demethylase - genetics</subject><subject>Sterol 14-Demethylase - metabolism</subject><subject>triazole</subject><subject>triazoles</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10U1v1DAQBmALgWgpiH8AljhwQCn-yto-VhW0SAsUlRWoF2vi2K2XxA52Ilh-Pamy7I3TzOHRO9I7CD2n5JQSwt4O5ZRzoR6gY1qzVSW0Vg8Pu_p-hJ6UsiWEaK3ZY3TEmOSEEnGMtpuhhdHhFHHv7B3EUPqCk8fwJ3UOZ1dCGSFah0PEH3c2leEOXHZdB_g2Qx9isGneIbY49EMXLIwhxYJ9ythP45QdtimOOXVP0SMPXXHP9vMEbd6_-3p-Wa0_X3w4P1tXVhCpqpq1nklLeCMtX62cooTWra5bIRtqOUDrqW40bZi3XAhBAZTVTVMrZwkIyk_QqyV3yOnn5MpotmnKcT5pKFNU1UJyPqvXi7I5lZKdN0MOPeSdocTcd2qGYu47neWLfd7U9K49uH8lzuDNAn6Fzu3-l2Ourvdx1aLnYt3vg4b8w6wkl7X59unC3NRXXy7XqjY3s3-5eA_JwG0OxWyuGaFifqfURBD-F3JdmNM</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Cools, Hans J</creator><creator>Fraaije, Bart A</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201302</creationdate><title>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</title><author>Cools, Hans J ; Fraaije, Bart A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Ascomycota - drug effects</topic><topic>Ascomycota - enzymology</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - metabolism</topic><topic>Azoles - pharmacology</topic><topic>Bacteria</topic><topic>Correlation analysis</topic><topic>CYP51</topic><topic>Drug Resistance, Fungal</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>evolution</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>fungicide resistance</topic><topic>fungicides</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Genotype &amp; phenotype</topic><topic>leaf blotch</topic><topic>mechanisms</topic><topic>Mycosphaerella graminicola</topic><topic>pathogens</topic><topic>Pesticides</topic><topic>phenotype</topic><topic>selection response</topic><topic>Septoria</topic><topic>Septoria leaf blotch</topic><topic>Sterol 14-Demethylase - genetics</topic><topic>Sterol 14-Demethylase - metabolism</topic><topic>triazole</topic><topic>triazoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cools, Hans J</creatorcontrib><creatorcontrib>Fraaije, Bart A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cools, Hans J</au><au>Fraaije, Bart A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</atitle><jtitle>Pest management science</jtitle><addtitle>Pest. Manag. Sci</addtitle><date>2013-02</date><risdate>2013</risdate><volume>69</volume><issue>2</issue><spage>150</spage><epage>155</epage><pages>150-155</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><coden>PMSCFC</coden><abstract>This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>22730104</pmid><doi>10.1002/ps.3348</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1526-498X
ispartof Pest management science, 2013-02, Vol.69 (2), p.150-155
issn 1526-498X
1526-4998
language eng
recordid cdi_proquest_journals_1281854733
source Wiley-Blackwell Read & Publish Collection
subjects Amino acids
Ascomycota - drug effects
Ascomycota - enzymology
Ascomycota - genetics
Ascomycota - metabolism
Azoles - pharmacology
Bacteria
Correlation analysis
CYP51
Drug Resistance, Fungal
enzyme activity
Enzymes
evolution
Fungal Proteins - genetics
Fungal Proteins - metabolism
fungicide resistance
fungicides
Fungicides, Industrial - pharmacology
Genotype & phenotype
leaf blotch
mechanisms
Mycosphaerella graminicola
pathogens
Pesticides
phenotype
selection response
Septoria
Septoria leaf blotch
Sterol 14-Demethylase - genetics
Sterol 14-Demethylase - metabolism
triazole
triazoles
title Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Update%20on%20mechanisms%20of%20azole%20resistance%20in%20Mycosphaerella%20graminicola%20and%20implications%20for%20future%20control&rft.jtitle=Pest%20management%20science&rft.au=Cools,%20Hans%20J&rft.date=2013-02&rft.volume=69&rft.issue=2&rft.spage=150&rft.epage=155&rft.pages=150-155&rft.issn=1526-498X&rft.eissn=1526-4998&rft.coden=PMSCFC&rft_id=info:doi/10.1002/ps.3348&rft_dat=%3Cproquest_cross%3E2875269871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1281854733&rft_id=info:pmid/22730104&rfr_iscdi=true