Loading…
Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control
This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole targe...
Saved in:
Published in: | Pest management science 2013-02, Vol.69 (2), p.150-155 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413 |
---|---|
cites | cdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413 |
container_end_page | 155 |
container_issue | 2 |
container_start_page | 150 |
container_title | Pest management science |
container_volume | 69 |
creator | Cools, Hans J Fraaije, Bart A |
description | This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry |
doi_str_mv | 10.1002/ps.3348 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1281854733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875269871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</originalsourceid><addsrcrecordid>eNp10U1v1DAQBmALgWgpiH8AljhwQCn-yto-VhW0SAsUlRWoF2vi2K2XxA52Ilh-Pamy7I3TzOHRO9I7CD2n5JQSwt4O5ZRzoR6gY1qzVSW0Vg8Pu_p-hJ6UsiWEaK3ZY3TEmOSEEnGMtpuhhdHhFHHv7B3EUPqCk8fwJ3UOZ1dCGSFah0PEH3c2leEOXHZdB_g2Qx9isGneIbY49EMXLIwhxYJ9ythP45QdtimOOXVP0SMPXXHP9vMEbd6_-3p-Wa0_X3w4P1tXVhCpqpq1nklLeCMtX62cooTWra5bIRtqOUDrqW40bZi3XAhBAZTVTVMrZwkIyk_QqyV3yOnn5MpotmnKcT5pKFNU1UJyPqvXi7I5lZKdN0MOPeSdocTcd2qGYu47neWLfd7U9K49uH8lzuDNAn6Fzu3-l2Ourvdx1aLnYt3vg4b8w6wkl7X59unC3NRXXy7XqjY3s3-5eA_JwG0OxWyuGaFifqfURBD-F3JdmNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1281854733</pqid></control><display><type>article</type><title>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cools, Hans J ; Fraaije, Bart A</creator><creatorcontrib>Cools, Hans J ; Fraaije, Bart A</creatorcontrib><description>This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.3348</identifier><identifier>PMID: 22730104</identifier><identifier>CODEN: PMSCFC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amino acids ; Ascomycota - drug effects ; Ascomycota - enzymology ; Ascomycota - genetics ; Ascomycota - metabolism ; Azoles - pharmacology ; Bacteria ; Correlation analysis ; CYP51 ; Drug Resistance, Fungal ; enzyme activity ; Enzymes ; evolution ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; fungicide resistance ; fungicides ; Fungicides, Industrial - pharmacology ; Genotype & phenotype ; leaf blotch ; mechanisms ; Mycosphaerella graminicola ; pathogens ; Pesticides ; phenotype ; selection response ; Septoria ; Septoria leaf blotch ; Sterol 14-Demethylase - genetics ; Sterol 14-Demethylase - metabolism ; triazole ; triazoles</subject><ispartof>Pest management science, 2013-02, Vol.69 (2), p.150-155</ispartof><rights>Copyright © 2012 Society of Chemical Industry</rights><rights>Copyright © 2012 Society of Chemical Industry.</rights><rights>Copyright John Wiley and Sons, Limited Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</citedby><cites>FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22730104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cools, Hans J</creatorcontrib><creatorcontrib>Fraaije, Bart A</creatorcontrib><title>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</title><title>Pest management science</title><addtitle>Pest. Manag. Sci</addtitle><description>This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry</description><subject>Amino acids</subject><subject>Ascomycota - drug effects</subject><subject>Ascomycota - enzymology</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - metabolism</subject><subject>Azoles - pharmacology</subject><subject>Bacteria</subject><subject>Correlation analysis</subject><subject>CYP51</subject><subject>Drug Resistance, Fungal</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>evolution</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>fungicide resistance</subject><subject>fungicides</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Genotype & phenotype</subject><subject>leaf blotch</subject><subject>mechanisms</subject><subject>Mycosphaerella graminicola</subject><subject>pathogens</subject><subject>Pesticides</subject><subject>phenotype</subject><subject>selection response</subject><subject>Septoria</subject><subject>Septoria leaf blotch</subject><subject>Sterol 14-Demethylase - genetics</subject><subject>Sterol 14-Demethylase - metabolism</subject><subject>triazole</subject><subject>triazoles</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10U1v1DAQBmALgWgpiH8AljhwQCn-yto-VhW0SAsUlRWoF2vi2K2XxA52Ilh-Pamy7I3TzOHRO9I7CD2n5JQSwt4O5ZRzoR6gY1qzVSW0Vg8Pu_p-hJ6UsiWEaK3ZY3TEmOSEEnGMtpuhhdHhFHHv7B3EUPqCk8fwJ3UOZ1dCGSFah0PEH3c2leEOXHZdB_g2Qx9isGneIbY49EMXLIwhxYJ9ythP45QdtimOOXVP0SMPXXHP9vMEbd6_-3p-Wa0_X3w4P1tXVhCpqpq1nklLeCMtX62cooTWra5bIRtqOUDrqW40bZi3XAhBAZTVTVMrZwkIyk_QqyV3yOnn5MpotmnKcT5pKFNU1UJyPqvXi7I5lZKdN0MOPeSdocTcd2qGYu47neWLfd7U9K49uH8lzuDNAn6Fzu3-l2Ourvdx1aLnYt3vg4b8w6wkl7X59unC3NRXXy7XqjY3s3-5eA_JwG0OxWyuGaFifqfURBD-F3JdmNM</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Cools, Hans J</creator><creator>Fraaije, Bart A</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201302</creationdate><title>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</title><author>Cools, Hans J ; Fraaije, Bart A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Ascomycota - drug effects</topic><topic>Ascomycota - enzymology</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - metabolism</topic><topic>Azoles - pharmacology</topic><topic>Bacteria</topic><topic>Correlation analysis</topic><topic>CYP51</topic><topic>Drug Resistance, Fungal</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>evolution</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>fungicide resistance</topic><topic>fungicides</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Genotype & phenotype</topic><topic>leaf blotch</topic><topic>mechanisms</topic><topic>Mycosphaerella graminicola</topic><topic>pathogens</topic><topic>Pesticides</topic><topic>phenotype</topic><topic>selection response</topic><topic>Septoria</topic><topic>Septoria leaf blotch</topic><topic>Sterol 14-Demethylase - genetics</topic><topic>Sterol 14-Demethylase - metabolism</topic><topic>triazole</topic><topic>triazoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cools, Hans J</creatorcontrib><creatorcontrib>Fraaije, Bart A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cools, Hans J</au><au>Fraaije, Bart A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control</atitle><jtitle>Pest management science</jtitle><addtitle>Pest. Manag. Sci</addtitle><date>2013-02</date><risdate>2013</risdate><volume>69</volume><issue>2</issue><spage>150</spage><epage>155</epage><pages>150-155</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><coden>PMSCFC</coden><abstract>This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>22730104</pmid><doi>10.1002/ps.3348</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-498X |
ispartof | Pest management science, 2013-02, Vol.69 (2), p.150-155 |
issn | 1526-498X 1526-4998 |
language | eng |
recordid | cdi_proquest_journals_1281854733 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amino acids Ascomycota - drug effects Ascomycota - enzymology Ascomycota - genetics Ascomycota - metabolism Azoles - pharmacology Bacteria Correlation analysis CYP51 Drug Resistance, Fungal enzyme activity Enzymes evolution Fungal Proteins - genetics Fungal Proteins - metabolism fungicide resistance fungicides Fungicides, Industrial - pharmacology Genotype & phenotype leaf blotch mechanisms Mycosphaerella graminicola pathogens Pesticides phenotype selection response Septoria Septoria leaf blotch Sterol 14-Demethylase - genetics Sterol 14-Demethylase - metabolism triazole triazoles |
title | Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Update%20on%20mechanisms%20of%20azole%20resistance%20in%20Mycosphaerella%20graminicola%20and%20implications%20for%20future%20control&rft.jtitle=Pest%20management%20science&rft.au=Cools,%20Hans%20J&rft.date=2013-02&rft.volume=69&rft.issue=2&rft.spage=150&rft.epage=155&rft.pages=150-155&rft.issn=1526-498X&rft.eissn=1526-4998&rft.coden=PMSCFC&rft_id=info:doi/10.1002/ps.3348&rft_dat=%3Cproquest_cross%3E2875269871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4078-52df27c03b7c366e81015d95d47b1c3aadf19b91b2fc34441aa8c9bb58ec0a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1281854733&rft_id=info:pmid/22730104&rfr_iscdi=true |