Loading…

Grothendieck-Lidski theorem for subspaces of Lp-spaces

In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L[infin]-space is 2/3-nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μk(T)} of T. Lidski, in 1959, proved his famous theorem on the coincidence of the trace of the S1-...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2013-02, Vol.286 (2-3), p.279
Main Authors: Reinov, Oleg, Latif, Qaisar
Format: Article
Language:eng ; fre ; ger
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2-3
container_start_page 279
container_title Mathematische Nachrichten
container_volume 286
creator Reinov, Oleg
Latif, Qaisar
description In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L[infin]-space is 2/3-nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μk(T)} of T. Lidski, in 1959, proved his famous theorem on the coincidence of the trace of the S1-operator in L2(ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document}[Image omitted see PDF]. We show that for p [1, [infin]] and s (0, 1] with 1/s = 1 + |1/2 - 1/p|, and for every s-nuclear operator T in every subspace of any Lp(ν)-space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = [infin] one has s = 2/3. [PUBLICATION ABSTRACT]
doi_str_mv 10.1002/mana.201100112
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1282735906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878915991</sourcerecordid><originalsourceid>FETCH-proquest_journals_12827359063</originalsourceid><addsrcrecordid>eNqNir0OgjAYRRujifizOjdxrn4ttsBs_BkYHdxIhRIBodgP3t8m-gBON-eeQ8iGw44DiH2rO70TwD1wLiYk4FIIJhRXUxL4QDIZH-5zskCsASBJIhUQdXF2eJquqEzesLQqsKmoP6wzLS2tozg-sNe5QWpLmvbsCysyK_ULzfq3S7I9n27HK-udfY8Gh6y2o-u8yriIRRTKBFT4X_UBwVw72A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282735906</pqid></control><display><type>article</type><title>Grothendieck-Lidski theorem for subspaces of Lp-spaces</title><source>Wiley</source><creator>Reinov, Oleg ; Latif, Qaisar</creator><creatorcontrib>Reinov, Oleg ; Latif, Qaisar</creatorcontrib><description>In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L[infin]-space is 2/3-nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μk(T)} of T. Lidski, in 1959, proved his famous theorem on the coincidence of the trace of the S1-operator in L2(ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document}[Image omitted see PDF]. We show that for p [1, [infin]] and s (0, 1] with 1/s = 1 + |1/2 - 1/p|, and for every s-nuclear operator T in every subspace of any Lp(ν)-space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = [infin] one has s = 2/3. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201100112</identifier><language>eng ; fre ; ger</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><ispartof>Mathematische Nachrichten, 2013-02, Vol.286 (2-3), p.279</ispartof><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><title>Grothendieck-Lidski theorem for subspaces of Lp-spaces</title><title>Mathematische Nachrichten</title><description>In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L[infin]-space is 2/3-nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μk(T)} of T. Lidski, in 1959, proved his famous theorem on the coincidence of the trace of the S1-operator in L2(ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document}[Image omitted see PDF]. We show that for p [1, [infin]] and s (0, 1] with 1/s = 1 + |1/2 - 1/p|, and for every s-nuclear operator T in every subspace of any Lp(ν)-space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = [infin] one has s = 2/3. [PUBLICATION ABSTRACT]</description><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNir0OgjAYRRujifizOjdxrn4ttsBs_BkYHdxIhRIBodgP3t8m-gBON-eeQ8iGw44DiH2rO70TwD1wLiYk4FIIJhRXUxL4QDIZH-5zskCsASBJIhUQdXF2eJquqEzesLQqsKmoP6wzLS2tozg-sNe5QWpLmvbsCysyK_ULzfq3S7I9n27HK-udfY8Gh6y2o-u8yriIRRTKBFT4X_UBwVw72A</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Reinov, Oleg</creator><creator>Latif, Qaisar</creator><general>Wiley Subscription Services, Inc</general><scope/></search><sort><creationdate>20130201</creationdate><title>Grothendieck-Lidski theorem for subspaces of Lp-spaces</title><author>Reinov, Oleg ; Latif, Qaisar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_12827359063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre ; ger</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><au>Latif, Qaisar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grothendieck-Lidski theorem for subspaces of Lp-spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>286</volume><issue>2-3</issue><spage>279</spage><pages>279-</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L[infin]-space is 2/3-nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μk(T)} of T. Lidski, in 1959, proved his famous theorem on the coincidence of the trace of the S1-operator in L2(ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document}[Image omitted see PDF]. We show that for p [1, [infin]] and s (0, 1] with 1/s = 1 + |1/2 - 1/p|, and for every s-nuclear operator T in every subspace of any Lp(ν)-space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = [infin] one has s = 2/3. [PUBLICATION ABSTRACT]</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201100112</doi></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2013-02, Vol.286 (2-3), p.279
issn 0025-584X
1522-2616
language eng ; fre ; ger
recordid cdi_proquest_journals_1282735906
source Wiley
title Grothendieck-Lidski theorem for subspaces of Lp-spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grothendieck-Lidski%20theorem%20for%20subspaces%20of%20Lp-spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Reinov,%20Oleg&rft.date=2013-02-01&rft.volume=286&rft.issue=2-3&rft.spage=279&rft.pages=279-&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201100112&rft_dat=%3Cproquest%3E2878915991%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_12827359063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1282735906&rft_id=info:pmid/&rfr_iscdi=true