Loading…

A 0.4-6-GHz Frequency Synthesizer Using Dual-Mode VCO for Software-Defined Radio

This paper presents a dual-mode voltage-controlled oscillator (DMVCO) and a DMVCO-based wideband frequency synthesizer for software-defined radio applications. The DMVCO allows the synthesizer to leverage single-sideband (SSB) mixing, a power efficient approach, for high-frequency local oscillator (...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2013-02, Vol.61 (2), p.848-859
Main Authors: Zhou, Jin, Li, Wei, Huang, Deping, Lian, Chen, Li, Ning, Ren, Junyan, Chen, Jinghong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a dual-mode voltage-controlled oscillator (DMVCO) and a DMVCO-based wideband frequency synthesizer for software-defined radio applications. The DMVCO allows the synthesizer to leverage single-sideband (SSB) mixing, a power efficient approach, for high-frequency local oscillator (LO) signal generation, without the need of poly-phase filter or quadrature voltage-controlled oscillator (QVCO). When compared to the QVCO approach, the DMVCO solution allows the synthesizer to provide continuous LO signals without frequency gaps. The synthesizer is implemented in a 0.13-μm CMOS technology, occupying an active area of 2.2 mm 2 and consuming 34-77 mW of power. It provides in-phase and quadrature-phase LO signals over the frequency bands of 0.4-3- and 5-6 GHz and differential LO signals from 0.4 to 6 GHz, supporting major wireless standards including DVB-T, GSM, WCDMA, TD-SCDMA, WLAN802.11 a/b/g, and Bluetooth. The measured phase noises are -135 and -124 dBc/Hz at 3-MHz offset under 1.8- and 5.15-GHz carriers, respectively. The measured spurious tones are less than - 42 dBc at the SSB mixer output.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2012.2233493