Loading…
Downregulation of Maize Cinnamoyl‐Coenzyme A Reductase via RNA Interference Technology Causes Brown Midrib and Improves Ammonia Fiber Expansion‐Pretreated Conversion into Fermentable Sugars for Biofuels
ABSTRACT Conversion of lignocellulosic biomass into fermentable sugars for biofuels requires expensive pretreatment processes involving the breakdown of the cell wall structure and/or removal of lignin to increase accessibility of enzymes to the crop structural carbohydrates. Lignin is synthesized f...
Saved in:
Published in: | Crop science 2012-11, Vol.52 (6), p.2687-2701 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3 |
container_end_page | 2701 |
container_issue | 6 |
container_start_page | 2687 |
container_title | Crop science |
container_volume | 52 |
creator | Park, Sang‐Hyuck Mei, Chuansheng Pauly, Markus Ong, Rebecca Garlock Dale, Bruce E. Sabzikar, Robab Fotoh, Hussien Nguyen, Thang Sticklen, Mariam |
description | ABSTRACT
Conversion of lignocellulosic biomass into fermentable sugars for biofuels requires expensive pretreatment processes involving the breakdown of the cell wall structure and/or removal of lignin to increase accessibility of enzymes to the crop structural carbohydrates. Lignin is synthesized from precursors through a complex biosynthesis pathway. One of the important enzymes in this pathway is cinnamoyl‐coenzyme A reductase (CCR), which catalyzes the transformation of feruloyl and p‐coumaryl thioesters to their respective aldehydes. In an attempt to reduce lignin content and potentially accelerate deconstruction of maize (Zea mays L.) stover structural carbohydrates into fermentable sugars, expression of maize CCR (ZmCCR1; EC 1.2.1.44) was downregulated via ribonucleic acid interference (RNAi). Thirty first generation independent ZmCCR1_RNAi transgenic lines were produced. Among 10 out of 30 randomly tested, six lines showed significantly reduced ZmCCR1 transcription. The second generation of these ZmCCR1 downregulated transgenic plants exhibited brown coloration of midribs, husk, and stems and 7.0 to 8.7% reduction in Klason lignin. Also, crystalline cellulose was slightly increased in the lignin downregulated maize stover and further increased conversion of the ammonia fiber expansion (AFEX)‐pretreated maize stover into fermentable sugars. The third generation of CCR downregulated plants showed further reduced CCR transcription as compared to their second generation of transgenic (T1) plants. |
doi_str_mv | 10.2135/cropsci2012.04.0253 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1285243651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887156421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3</originalsourceid><addsrcrecordid>eNqNUctuE0EQXCGQMIEv4NIS4mhnnvs4OkscLCUksoPEbTU722sm2p0xM7sOzimfwJfxEXwJYxwhjpxaqq6uqlYlyVtKZoxyeaq92wZtGKFsRsSMMMmfJRMquJySVPLnyYQQSqc0519eJq9CuCOEZEUmJ8nPD-7eetyMnRqMs-BauFLmAaE01qre7btfjz9Kh_Zh3yPMYYXNqAcVEHZGwerTHJZ2QN-iR6sRblF_ta5zmz2UagwY4MxHA7gyjTc1KNvAst96t4ubed87G0UWpkYP59-3yoYYIfrdeBw8qgEbKJ3doT_gYOzgYIG-RzuoukNYjxvlA7TOw5lx7YhdeJ28aFUX8M3TPEk-L85vy4_Ty-uLZTm_nGqeET5FntKaYyaKHJu2zjItpGzSXNAmazmTghd1k6eUCSrrttaU6aYQItcFQ5Vnmp8k74668ZdvI4ahunOjt9GyoiyXTPBU0sjiR1bsJwSPbbX1pld-X1FSHYqr_imuIqI6FBev3j9pq6BV13pltQl_T1kqRYxWRN7iyLs3He7_R7oq1yUrV9c363J5wIn4Y_gb3sS2FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285243651</pqid></control><display><type>article</type><title>Downregulation of Maize Cinnamoyl‐Coenzyme A Reductase via RNA Interference Technology Causes Brown Midrib and Improves Ammonia Fiber Expansion‐Pretreated Conversion into Fermentable Sugars for Biofuels</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Park, Sang‐Hyuck ; Mei, Chuansheng ; Pauly, Markus ; Ong, Rebecca Garlock ; Dale, Bruce E. ; Sabzikar, Robab ; Fotoh, Hussien ; Nguyen, Thang ; Sticklen, Mariam</creator><creatorcontrib>Park, Sang‐Hyuck ; Mei, Chuansheng ; Pauly, Markus ; Ong, Rebecca Garlock ; Dale, Bruce E. ; Sabzikar, Robab ; Fotoh, Hussien ; Nguyen, Thang ; Sticklen, Mariam</creatorcontrib><description>ABSTRACT
Conversion of lignocellulosic biomass into fermentable sugars for biofuels requires expensive pretreatment processes involving the breakdown of the cell wall structure and/or removal of lignin to increase accessibility of enzymes to the crop structural carbohydrates. Lignin is synthesized from precursors through a complex biosynthesis pathway. One of the important enzymes in this pathway is cinnamoyl‐coenzyme A reductase (CCR), which catalyzes the transformation of feruloyl and p‐coumaryl thioesters to their respective aldehydes. In an attempt to reduce lignin content and potentially accelerate deconstruction of maize (Zea mays L.) stover structural carbohydrates into fermentable sugars, expression of maize CCR (ZmCCR1; EC 1.2.1.44) was downregulated via ribonucleic acid interference (RNAi). Thirty first generation independent ZmCCR1_RNAi transgenic lines were produced. Among 10 out of 30 randomly tested, six lines showed significantly reduced ZmCCR1 transcription. The second generation of these ZmCCR1 downregulated transgenic plants exhibited brown coloration of midribs, husk, and stems and 7.0 to 8.7% reduction in Klason lignin. Also, crystalline cellulose was slightly increased in the lignin downregulated maize stover and further increased conversion of the ammonia fiber expansion (AFEX)‐pretreated maize stover into fermentable sugars. The third generation of CCR downregulated plants showed further reduced CCR transcription as compared to their second generation of transgenic (T1) plants.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2012.04.0253</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison, WI: The Crop Science Society of America, Inc</publisher><subject>Agronomy. Soil science and plant productions ; Aldehydes ; Ammonia ; Biodiesel fuels ; Biofuels ; Biological and medical sciences ; Biomass ; Biosynthesis ; Carbohydrates ; Cellulose ; Colleges & universities ; Conversion ; Corn ; Enzymes ; Ethanol ; Expansion ; Fundamental and applied biological sciences. Psychology ; Plant growth ; Seeds ; Stover ; Sugar ; Transgenic plants</subject><ispartof>Crop science, 2012-11, Vol.52 (6), p.2687-2701</ispartof><rights>Copyright © by the Crop Science Society of America, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Nov/Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3</citedby><cites>FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26548619$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sang‐Hyuck</creatorcontrib><creatorcontrib>Mei, Chuansheng</creatorcontrib><creatorcontrib>Pauly, Markus</creatorcontrib><creatorcontrib>Ong, Rebecca Garlock</creatorcontrib><creatorcontrib>Dale, Bruce E.</creatorcontrib><creatorcontrib>Sabzikar, Robab</creatorcontrib><creatorcontrib>Fotoh, Hussien</creatorcontrib><creatorcontrib>Nguyen, Thang</creatorcontrib><creatorcontrib>Sticklen, Mariam</creatorcontrib><title>Downregulation of Maize Cinnamoyl‐Coenzyme A Reductase via RNA Interference Technology Causes Brown Midrib and Improves Ammonia Fiber Expansion‐Pretreated Conversion into Fermentable Sugars for Biofuels</title><title>Crop science</title><description>ABSTRACT
Conversion of lignocellulosic biomass into fermentable sugars for biofuels requires expensive pretreatment processes involving the breakdown of the cell wall structure and/or removal of lignin to increase accessibility of enzymes to the crop structural carbohydrates. Lignin is synthesized from precursors through a complex biosynthesis pathway. One of the important enzymes in this pathway is cinnamoyl‐coenzyme A reductase (CCR), which catalyzes the transformation of feruloyl and p‐coumaryl thioesters to their respective aldehydes. In an attempt to reduce lignin content and potentially accelerate deconstruction of maize (Zea mays L.) stover structural carbohydrates into fermentable sugars, expression of maize CCR (ZmCCR1; EC 1.2.1.44) was downregulated via ribonucleic acid interference (RNAi). Thirty first generation independent ZmCCR1_RNAi transgenic lines were produced. Among 10 out of 30 randomly tested, six lines showed significantly reduced ZmCCR1 transcription. The second generation of these ZmCCR1 downregulated transgenic plants exhibited brown coloration of midribs, husk, and stems and 7.0 to 8.7% reduction in Klason lignin. Also, crystalline cellulose was slightly increased in the lignin downregulated maize stover and further increased conversion of the ammonia fiber expansion (AFEX)‐pretreated maize stover into fermentable sugars. The third generation of CCR downregulated plants showed further reduced CCR transcription as compared to their second generation of transgenic (T1) plants.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Aldehydes</subject><subject>Ammonia</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Cellulose</subject><subject>Colleges & universities</subject><subject>Conversion</subject><subject>Corn</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Expansion</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Plant growth</subject><subject>Seeds</subject><subject>Stover</subject><subject>Sugar</subject><subject>Transgenic plants</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUctuE0EQXCGQMIEv4NIS4mhnnvs4OkscLCUksoPEbTU722sm2p0xM7sOzimfwJfxEXwJYxwhjpxaqq6uqlYlyVtKZoxyeaq92wZtGKFsRsSMMMmfJRMquJySVPLnyYQQSqc0519eJq9CuCOEZEUmJ8nPD-7eetyMnRqMs-BauFLmAaE01qre7btfjz9Kh_Zh3yPMYYXNqAcVEHZGwerTHJZ2QN-iR6sRblF_ta5zmz2UagwY4MxHA7gyjTc1KNvAst96t4ubed87G0UWpkYP59-3yoYYIfrdeBw8qgEbKJ3doT_gYOzgYIG-RzuoukNYjxvlA7TOw5lx7YhdeJ28aFUX8M3TPEk-L85vy4_Ty-uLZTm_nGqeET5FntKaYyaKHJu2zjItpGzSXNAmazmTghd1k6eUCSrrttaU6aYQItcFQ5Vnmp8k74668ZdvI4ahunOjt9GyoiyXTPBU0sjiR1bsJwSPbbX1pld-X1FSHYqr_imuIqI6FBev3j9pq6BV13pltQl_T1kqRYxWRN7iyLs3He7_R7oq1yUrV9c363J5wIn4Y_gb3sS2FQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Park, Sang‐Hyuck</creator><creator>Mei, Chuansheng</creator><creator>Pauly, Markus</creator><creator>Ong, Rebecca Garlock</creator><creator>Dale, Bruce E.</creator><creator>Sabzikar, Robab</creator><creator>Fotoh, Hussien</creator><creator>Nguyen, Thang</creator><creator>Sticklen, Mariam</creator><general>The Crop Science Society of America, Inc</general><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>201211</creationdate><title>Downregulation of Maize Cinnamoyl‐Coenzyme A Reductase via RNA Interference Technology Causes Brown Midrib and Improves Ammonia Fiber Expansion‐Pretreated Conversion into Fermentable Sugars for Biofuels</title><author>Park, Sang‐Hyuck ; Mei, Chuansheng ; Pauly, Markus ; Ong, Rebecca Garlock ; Dale, Bruce E. ; Sabzikar, Robab ; Fotoh, Hussien ; Nguyen, Thang ; Sticklen, Mariam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Aldehydes</topic><topic>Ammonia</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Cellulose</topic><topic>Colleges & universities</topic><topic>Conversion</topic><topic>Corn</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Expansion</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Plant growth</topic><topic>Seeds</topic><topic>Stover</topic><topic>Sugar</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sang‐Hyuck</creatorcontrib><creatorcontrib>Mei, Chuansheng</creatorcontrib><creatorcontrib>Pauly, Markus</creatorcontrib><creatorcontrib>Ong, Rebecca Garlock</creatorcontrib><creatorcontrib>Dale, Bruce E.</creatorcontrib><creatorcontrib>Sabzikar, Robab</creatorcontrib><creatorcontrib>Fotoh, Hussien</creatorcontrib><creatorcontrib>Nguyen, Thang</creatorcontrib><creatorcontrib>Sticklen, Mariam</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sang‐Hyuck</au><au>Mei, Chuansheng</au><au>Pauly, Markus</au><au>Ong, Rebecca Garlock</au><au>Dale, Bruce E.</au><au>Sabzikar, Robab</au><au>Fotoh, Hussien</au><au>Nguyen, Thang</au><au>Sticklen, Mariam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of Maize Cinnamoyl‐Coenzyme A Reductase via RNA Interference Technology Causes Brown Midrib and Improves Ammonia Fiber Expansion‐Pretreated Conversion into Fermentable Sugars for Biofuels</atitle><jtitle>Crop science</jtitle><date>2012-11</date><risdate>2012</risdate><volume>52</volume><issue>6</issue><spage>2687</spage><epage>2701</epage><pages>2687-2701</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>ABSTRACT
Conversion of lignocellulosic biomass into fermentable sugars for biofuels requires expensive pretreatment processes involving the breakdown of the cell wall structure and/or removal of lignin to increase accessibility of enzymes to the crop structural carbohydrates. Lignin is synthesized from precursors through a complex biosynthesis pathway. One of the important enzymes in this pathway is cinnamoyl‐coenzyme A reductase (CCR), which catalyzes the transformation of feruloyl and p‐coumaryl thioesters to their respective aldehydes. In an attempt to reduce lignin content and potentially accelerate deconstruction of maize (Zea mays L.) stover structural carbohydrates into fermentable sugars, expression of maize CCR (ZmCCR1; EC 1.2.1.44) was downregulated via ribonucleic acid interference (RNAi). Thirty first generation independent ZmCCR1_RNAi transgenic lines were produced. Among 10 out of 30 randomly tested, six lines showed significantly reduced ZmCCR1 transcription. The second generation of these ZmCCR1 downregulated transgenic plants exhibited brown coloration of midribs, husk, and stems and 7.0 to 8.7% reduction in Klason lignin. Also, crystalline cellulose was slightly increased in the lignin downregulated maize stover and further increased conversion of the ammonia fiber expansion (AFEX)‐pretreated maize stover into fermentable sugars. The third generation of CCR downregulated plants showed further reduced CCR transcription as compared to their second generation of transgenic (T1) plants.</abstract><cop>Madison, WI</cop><pub>The Crop Science Society of America, Inc</pub><doi>10.2135/cropsci2012.04.0253</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-183X |
ispartof | Crop science, 2012-11, Vol.52 (6), p.2687-2701 |
issn | 0011-183X 1435-0653 |
language | eng |
recordid | cdi_proquest_journals_1285243651 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agronomy. Soil science and plant productions Aldehydes Ammonia Biodiesel fuels Biofuels Biological and medical sciences Biomass Biosynthesis Carbohydrates Cellulose Colleges & universities Conversion Corn Enzymes Ethanol Expansion Fundamental and applied biological sciences. Psychology Plant growth Seeds Stover Sugar Transgenic plants |
title | Downregulation of Maize Cinnamoyl‐Coenzyme A Reductase via RNA Interference Technology Causes Brown Midrib and Improves Ammonia Fiber Expansion‐Pretreated Conversion into Fermentable Sugars for Biofuels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20Maize%20Cinnamoyl%E2%80%90Coenzyme%20A%20Reductase%20via%20RNA%20Interference%20Technology%20Causes%20Brown%20Midrib%20and%20Improves%20Ammonia%20Fiber%20Expansion%E2%80%90Pretreated%20Conversion%20into%20Fermentable%20Sugars%20for%20Biofuels&rft.jtitle=Crop%20science&rft.au=Park,%20Sang%E2%80%90Hyuck&rft.date=2012-11&rft.volume=52&rft.issue=6&rft.spage=2687&rft.epage=2701&rft.pages=2687-2701&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2012.04.0253&rft_dat=%3Cproquest_cross%3E2887156421%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3703-e361b3e7498edfb77c455d6841d7f325439bd8612415bfbc12cd9448c92ea87c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1285243651&rft_id=info:pmid/&rfr_iscdi=true |