Loading…
Formation of ring-patterned nanoclusters by laser–plume interaction
This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013, Vol.15 (1), p.1, Article 1386 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures. |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-012-1386-3 |