Loading…

Confidence Intervals for Variance Components in Measurement System Capability Studies

In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this a...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2012-08, Vol.41 (16-17), p.2932-2943
Main Authors: Deldossi, Laura, Zappa, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3
container_end_page 2943
container_issue 16-17
container_start_page 2932
container_title Communications in statistics. Theory and methods
container_volume 41
creator Deldossi, Laura
Zappa, Diego
description In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ R , i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.
doi_str_mv 10.1080/03610926.2011.589956
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1287520887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891453391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz10zadM2J5Hix8KKh3XFW8i2CWRpkzVplf57U6pXT8PMPPMOPAhdA1kBKcktSXMgnOYrSgBWrOSc5SdoASylSQbs4xQtJiSZmHN0EcKBEGBFmS7QrnJWm0bZWuG17ZX_km3A2nn8Lr2R07hy3dFZZfuAjcUvSobBqy72eDuGXnW4kke5N63pR7zth8aocInOdMxRV791iXaPD2_Vc7J5fVpX95ukpmXWJ6B03YCkOi0yKYFmNCcFcCAaCr7nUpdNDiBTxWvC44JkrNFZDpHijNVNukQ3c-7Ru89BhV4c3OBtfCmAlgWjpCyLSGUzVXsXgldaHL3ppB8FEDEJFH8CxSRQzALj2d18Zmz00clv59tG9HJsndc-qjFBpP8m_ACIUXbJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287520887</pqid></control><display><type>article</type><title>Confidence Intervals for Variance Components in Measurement System Capability Studies</title><source>Taylor and Francis Science and Technology Collection</source><creator>Deldossi, Laura ; Zappa, Diego</creator><creatorcontrib>Deldossi, Laura ; Zappa, Diego</creatorcontrib><description>In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ R , i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2011.589956</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>62 F ; 62 K ; Confidence coefficient ; Confidence intervals ; Generalized confidence interval ; Modified large sample ; Repeatability and reproducibility ; Studies</subject><ispartof>Communications in statistics. Theory and methods, 2012-08, Vol.41 (16-17), p.2932-2943</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Deldossi, Laura</creatorcontrib><creatorcontrib>Zappa, Diego</creatorcontrib><title>Confidence Intervals for Variance Components in Measurement System Capability Studies</title><title>Communications in statistics. Theory and methods</title><description>In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ R , i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.</description><subject>62 F</subject><subject>62 K</subject><subject>Confidence coefficient</subject><subject>Confidence intervals</subject><subject>Generalized confidence interval</subject><subject>Modified large sample</subject><subject>Repeatability and reproducibility</subject><subject>Studies</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz10zadM2J5Hix8KKh3XFW8i2CWRpkzVplf57U6pXT8PMPPMOPAhdA1kBKcktSXMgnOYrSgBWrOSc5SdoASylSQbs4xQtJiSZmHN0EcKBEGBFmS7QrnJWm0bZWuG17ZX_km3A2nn8Lr2R07hy3dFZZfuAjcUvSobBqy72eDuGXnW4kke5N63pR7zth8aocInOdMxRV791iXaPD2_Vc7J5fVpX95ukpmXWJ6B03YCkOi0yKYFmNCcFcCAaCr7nUpdNDiBTxWvC44JkrNFZDpHijNVNukQ3c-7Ru89BhV4c3OBtfCmAlgWjpCyLSGUzVXsXgldaHL3ppB8FEDEJFH8CxSRQzALj2d18Zmz00clv59tG9HJsndc-qjFBpP8m_ACIUXbJ</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Deldossi, Laura</creator><creator>Zappa, Diego</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120801</creationdate><title>Confidence Intervals for Variance Components in Measurement System Capability Studies</title><author>Deldossi, Laura ; Zappa, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>62 F</topic><topic>62 K</topic><topic>Confidence coefficient</topic><topic>Confidence intervals</topic><topic>Generalized confidence interval</topic><topic>Modified large sample</topic><topic>Repeatability and reproducibility</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deldossi, Laura</creatorcontrib><creatorcontrib>Zappa, Diego</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deldossi, Laura</au><au>Zappa, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Intervals for Variance Components in Measurement System Capability Studies</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>41</volume><issue>16-17</issue><spage>2932</spage><epage>2943</epage><pages>2932-2943</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ R , i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03610926.2011.589956</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2012-08, Vol.41 (16-17), p.2932-2943
issn 0361-0926
1532-415X
language eng
recordid cdi_proquest_journals_1287520887
source Taylor and Francis Science and Technology Collection
subjects 62 F
62 K
Confidence coefficient
Confidence intervals
Generalized confidence interval
Modified large sample
Repeatability and reproducibility
Studies
title Confidence Intervals for Variance Components in Measurement System Capability Studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Intervals%20for%20Variance%20Components%20in%20Measurement%20System%20Capability%20Studies&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Deldossi,%20Laura&rft.date=2012-08-01&rft.volume=41&rft.issue=16-17&rft.spage=2932&rft.epage=2943&rft.pages=2932-2943&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2011.589956&rft_dat=%3Cproquest_cross%3E2891453391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1287520887&rft_id=info:pmid/&rfr_iscdi=true