Loading…
Confidence Intervals for Variance Components in Measurement System Capability Studies
In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this a...
Saved in:
Published in: | Communications in statistics. Theory and methods 2012-08, Vol.41 (16-17), p.2932-2943 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3 |
container_end_page | 2943 |
container_issue | 16-17 |
container_start_page | 2932 |
container_title | Communications in statistics. Theory and methods |
container_volume | 41 |
creator | Deldossi, Laura Zappa, Diego |
description | In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ
R
, i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported. |
doi_str_mv | 10.1080/03610926.2011.589956 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1287520887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891453391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz10zadM2J5Hix8KKh3XFW8i2CWRpkzVplf57U6pXT8PMPPMOPAhdA1kBKcktSXMgnOYrSgBWrOSc5SdoASylSQbs4xQtJiSZmHN0EcKBEGBFmS7QrnJWm0bZWuG17ZX_km3A2nn8Lr2R07hy3dFZZfuAjcUvSobBqy72eDuGXnW4kke5N63pR7zth8aocInOdMxRV791iXaPD2_Vc7J5fVpX95ukpmXWJ6B03YCkOi0yKYFmNCcFcCAaCr7nUpdNDiBTxWvC44JkrNFZDpHijNVNukQ3c-7Ru89BhV4c3OBtfCmAlgWjpCyLSGUzVXsXgldaHL3ppB8FEDEJFH8CxSRQzALj2d18Zmz00clv59tG9HJsndc-qjFBpP8m_ACIUXbJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287520887</pqid></control><display><type>article</type><title>Confidence Intervals for Variance Components in Measurement System Capability Studies</title><source>Taylor and Francis Science and Technology Collection</source><creator>Deldossi, Laura ; Zappa, Diego</creator><creatorcontrib>Deldossi, Laura ; Zappa, Diego</creatorcontrib><description>In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ
R
, i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2011.589956</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>62 F ; 62 K ; Confidence coefficient ; Confidence intervals ; Generalized confidence interval ; Modified large sample ; Repeatability and reproducibility ; Studies</subject><ispartof>Communications in statistics. Theory and methods, 2012-08, Vol.41 (16-17), p.2932-2943</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Deldossi, Laura</creatorcontrib><creatorcontrib>Zappa, Diego</creatorcontrib><title>Confidence Intervals for Variance Components in Measurement System Capability Studies</title><title>Communications in statistics. Theory and methods</title><description>In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ
R
, i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.</description><subject>62 F</subject><subject>62 K</subject><subject>Confidence coefficient</subject><subject>Confidence intervals</subject><subject>Generalized confidence interval</subject><subject>Modified large sample</subject><subject>Repeatability and reproducibility</subject><subject>Studies</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz10zadM2J5Hix8KKh3XFW8i2CWRpkzVplf57U6pXT8PMPPMOPAhdA1kBKcktSXMgnOYrSgBWrOSc5SdoASylSQbs4xQtJiSZmHN0EcKBEGBFmS7QrnJWm0bZWuG17ZX_km3A2nn8Lr2R07hy3dFZZfuAjcUvSobBqy72eDuGXnW4kke5N63pR7zth8aocInOdMxRV791iXaPD2_Vc7J5fVpX95ukpmXWJ6B03YCkOi0yKYFmNCcFcCAaCr7nUpdNDiBTxWvC44JkrNFZDpHijNVNukQ3c-7Ru89BhV4c3OBtfCmAlgWjpCyLSGUzVXsXgldaHL3ppB8FEDEJFH8CxSRQzALj2d18Zmz00clv59tG9HJsndc-qjFBpP8m_ACIUXbJ</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Deldossi, Laura</creator><creator>Zappa, Diego</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120801</creationdate><title>Confidence Intervals for Variance Components in Measurement System Capability Studies</title><author>Deldossi, Laura ; Zappa, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>62 F</topic><topic>62 K</topic><topic>Confidence coefficient</topic><topic>Confidence intervals</topic><topic>Generalized confidence interval</topic><topic>Modified large sample</topic><topic>Repeatability and reproducibility</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deldossi, Laura</creatorcontrib><creatorcontrib>Zappa, Diego</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deldossi, Laura</au><au>Zappa, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Intervals for Variance Components in Measurement System Capability Studies</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>41</volume><issue>16-17</issue><spage>2932</spage><epage>2943</epage><pages>2932-2943</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In Measurement System Analysis a relevant issue is how to find confidence intervals for the parameters used to evaluate the capability of a gauge. In literature approximate solutions are available but they produce so wide intervals that they are often not effective in the decision process. In this article we introduce a new approach and, with particular reference to the parameter γ
R
, i.e., the ratio of the variance due to the process and the variance due to the instrument, we show that, under quite realistic assumptions, we obtain confidence intervals narrower than other methods. An application to a real microelectronic case study is reported.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/03610926.2011.589956</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2012-08, Vol.41 (16-17), p.2932-2943 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_proquest_journals_1287520887 |
source | Taylor and Francis Science and Technology Collection |
subjects | 62 F 62 K Confidence coefficient Confidence intervals Generalized confidence interval Modified large sample Repeatability and reproducibility Studies |
title | Confidence Intervals for Variance Components in Measurement System Capability Studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Intervals%20for%20Variance%20Components%20in%20Measurement%20System%20Capability%20Studies&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Deldossi,%20Laura&rft.date=2012-08-01&rft.volume=41&rft.issue=16-17&rft.spage=2932&rft.epage=2943&rft.pages=2932-2943&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2011.589956&rft_dat=%3Cproquest_cross%3E2891453391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-1efcd1a2f374aa12426071910f179b9af8d611a3e9c09719045df461607955cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1287520887&rft_id=info:pmid/&rfr_iscdi=true |