Loading…

On the relationship between the estimates of level models and difference models

This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illus...

Full description

Saved in:
Bibliographic Details
Published in:American journal of agricultural economics 1989-05, Vol.71 (2), p.432-434
Main Authors: Maeshiro, A, Wichers, R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73
cites
container_end_page 434
container_issue 2
container_start_page 432
container_title American journal of agricultural economics
container_volume 71
creator Maeshiro, A
Wichers, R
description This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.
doi_str_mv 10.2307/1241601
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1296546491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1241601</jstor_id><sourcerecordid>1241601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqUgXgCJSBw4BWwnteNjVQoFFVWIX3GxHHtNU0JS7BTo22OUqpzgtPLON7ueRWif4BOaYH5KaEoYJhuoQ1LG44xytok6GGMaCyzoNtrxfhaemIisgyaTKmqmEDkoVVPUlZ8W8yiH5hOgFcA3xZtqwEe1jUr4gDJ6qw2UPlKViUxhLTioNKy6u2jLqtLD3qp20f358G4wiseTi8tBfxzrlCUkzoHpLGfGGJGbRFNFueZCZKCNpb0Mm1z0Ui2yXGcE48QqQbFQXCRWEM1znnTRUTt37ur3RfiknNULV4WVklDBeilLBQnUcUtpV3vvwMq5C2ncUhIsf64lV9cKJG7Jz6KE5V-Y7F_1h7-Wg9Yy803tfi1rOW7lwjfwtZaVe5WMJ7wnR0_Pkp09pg-D6yt5E_jDlreqlurFFV7e39IwCFPGQ5j0f4JmIe83kHGUQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296546491</pqid></control><display><type>article</type><title>On the relationship between the estimates of level models and difference models</title><source>EBSCOhost Business Source Ultimate</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford University Press:Jisc Collections:Oxford Journal Archive: Access period 2024-2025</source><creator>Maeshiro, A ; Wichers, R</creator><creatorcontrib>Maeshiro, A ; Wichers, R</creatorcontrib><description>This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.2307/1241601</identifier><language>eng</language><publisher>Menasha, Wis: Oxford University Press</publisher><subject>applied research ; Constant coefficients ; differencing ; econometric models ; Economic models ; Estimate reliability ; Estimators ; generalized least squares ; Gross national product ; Least squares ; linear models ; Linear regression ; ordinary least squares ; Regression analysis ; Regression coefficients ; Statistical variance ; variance covariance matrix</subject><ispartof>American journal of agricultural economics, 1989-05, Vol.71 (2), p.432-434</ispartof><rights>Copyright 1989 American Agricultural Economics Association</rights><rights>1989 Agricultural and Applied Economics Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1241601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1241601$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,58219,58452</link.rule.ids></links><search><creatorcontrib>Maeshiro, A</creatorcontrib><creatorcontrib>Wichers, R</creatorcontrib><title>On the relationship between the estimates of level models and difference models</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><description>This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.</description><subject>applied research</subject><subject>Constant coefficients</subject><subject>differencing</subject><subject>econometric models</subject><subject>Economic models</subject><subject>Estimate reliability</subject><subject>Estimators</subject><subject>generalized least squares</subject><subject>Gross national product</subject><subject>Least squares</subject><subject>linear models</subject><subject>Linear regression</subject><subject>ordinary least squares</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Statistical variance</subject><subject>variance covariance matrix</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqUgXgCJSBw4BWwnteNjVQoFFVWIX3GxHHtNU0JS7BTo22OUqpzgtPLON7ueRWif4BOaYH5KaEoYJhuoQ1LG44xytok6GGMaCyzoNtrxfhaemIisgyaTKmqmEDkoVVPUlZ8W8yiH5hOgFcA3xZtqwEe1jUr4gDJ6qw2UPlKViUxhLTioNKy6u2jLqtLD3qp20f358G4wiseTi8tBfxzrlCUkzoHpLGfGGJGbRFNFueZCZKCNpb0Mm1z0Ui2yXGcE48QqQbFQXCRWEM1znnTRUTt37ur3RfiknNULV4WVklDBeilLBQnUcUtpV3vvwMq5C2ncUhIsf64lV9cKJG7Jz6KE5V-Y7F_1h7-Wg9Yy803tfi1rOW7lwjfwtZaVe5WMJ7wnR0_Pkp09pg-D6yt5E_jDlreqlurFFV7e39IwCFPGQ5j0f4JmIe83kHGUQw</recordid><startdate>198905</startdate><enddate>198905</enddate><creator>Maeshiro, A</creator><creator>Wichers, R</creator><general>Oxford University Press</general><general>American Agricultural Economics Association</general><general>American Farm Economic Association</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>GHEHK</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198905</creationdate><title>On the relationship between the estimates of level models and difference models</title><author>Maeshiro, A ; Wichers, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>applied research</topic><topic>Constant coefficients</topic><topic>differencing</topic><topic>econometric models</topic><topic>Economic models</topic><topic>Estimate reliability</topic><topic>Estimators</topic><topic>generalized least squares</topic><topic>Gross national product</topic><topic>Least squares</topic><topic>linear models</topic><topic>Linear regression</topic><topic>ordinary least squares</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Statistical variance</topic><topic>variance covariance matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeshiro, A</creatorcontrib><creatorcontrib>Wichers, R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 08</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeshiro, A</au><au>Wichers, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relationship between the estimates of level models and difference models</atitle><jtitle>American journal of agricultural economics</jtitle><addtitle>American Journal of Agricultural Economics</addtitle><date>1989-05</date><risdate>1989</risdate><volume>71</volume><issue>2</issue><spage>432</spage><epage>434</epage><pages>432-434</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><abstract>This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.</abstract><cop>Menasha, Wis</cop><pub>Oxford University Press</pub><doi>10.2307/1241601</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9092
ispartof American journal of agricultural economics, 1989-05, Vol.71 (2), p.432-434
issn 0002-9092
1467-8276
language eng
recordid cdi_proquest_journals_1296546491
source EBSCOhost Business Source Ultimate; EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford University Press:Jisc Collections:Oxford Journal Archive: Access period 2024-2025
subjects applied research
Constant coefficients
differencing
econometric models
Economic models
Estimate reliability
Estimators
generalized least squares
Gross national product
Least squares
linear models
Linear regression
ordinary least squares
Regression analysis
Regression coefficients
Statistical variance
variance covariance matrix
title On the relationship between the estimates of level models and difference models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relationship%20between%20the%20estimates%20of%20level%20models%20and%20difference%20models&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=Maeshiro,%20A&rft.date=1989-05&rft.volume=71&rft.issue=2&rft.spage=432&rft.epage=434&rft.pages=432-434&rft.issn=0002-9092&rft.eissn=1467-8276&rft_id=info:doi/10.2307/1241601&rft_dat=%3Cjstor_proqu%3E1241601%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1296546491&rft_id=info:pmid/&rft_jstor_id=1241601&rfr_iscdi=true