Loading…
On the relationship between the estimates of level models and difference models
This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illus...
Saved in:
Published in: | American journal of agricultural economics 1989-05, Vol.71 (2), p.432-434 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73 |
---|---|
cites | |
container_end_page | 434 |
container_issue | 2 |
container_start_page | 432 |
container_title | American journal of agricultural economics |
container_volume | 71 |
creator | Maeshiro, A Wichers, R |
description | This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency. |
doi_str_mv | 10.2307/1241601 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1296546491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1241601</jstor_id><sourcerecordid>1241601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqUgXgCJSBw4BWwnteNjVQoFFVWIX3GxHHtNU0JS7BTo22OUqpzgtPLON7ueRWif4BOaYH5KaEoYJhuoQ1LG44xytok6GGMaCyzoNtrxfhaemIisgyaTKmqmEDkoVVPUlZ8W8yiH5hOgFcA3xZtqwEe1jUr4gDJ6qw2UPlKViUxhLTioNKy6u2jLqtLD3qp20f358G4wiseTi8tBfxzrlCUkzoHpLGfGGJGbRFNFueZCZKCNpb0Mm1z0Ui2yXGcE48QqQbFQXCRWEM1znnTRUTt37ur3RfiknNULV4WVklDBeilLBQnUcUtpV3vvwMq5C2ncUhIsf64lV9cKJG7Jz6KE5V-Y7F_1h7-Wg9Yy803tfi1rOW7lwjfwtZaVe5WMJ7wnR0_Pkp09pg-D6yt5E_jDlreqlurFFV7e39IwCFPGQ5j0f4JmIe83kHGUQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296546491</pqid></control><display><type>article</type><title>On the relationship between the estimates of level models and difference models</title><source>EBSCOhost Business Source Ultimate</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford University Press:Jisc Collections:Oxford Journal Archive: Access period 2024-2025</source><creator>Maeshiro, A ; Wichers, R</creator><creatorcontrib>Maeshiro, A ; Wichers, R</creatorcontrib><description>This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.2307/1241601</identifier><language>eng</language><publisher>Menasha, Wis: Oxford University Press</publisher><subject>applied research ; Constant coefficients ; differencing ; econometric models ; Economic models ; Estimate reliability ; Estimators ; generalized least squares ; Gross national product ; Least squares ; linear models ; Linear regression ; ordinary least squares ; Regression analysis ; Regression coefficients ; Statistical variance ; variance covariance matrix</subject><ispartof>American journal of agricultural economics, 1989-05, Vol.71 (2), p.432-434</ispartof><rights>Copyright 1989 American Agricultural Economics Association</rights><rights>1989 Agricultural and Applied Economics Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1241601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1241601$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,58219,58452</link.rule.ids></links><search><creatorcontrib>Maeshiro, A</creatorcontrib><creatorcontrib>Wichers, R</creatorcontrib><title>On the relationship between the estimates of level models and difference models</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><description>This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.</description><subject>applied research</subject><subject>Constant coefficients</subject><subject>differencing</subject><subject>econometric models</subject><subject>Economic models</subject><subject>Estimate reliability</subject><subject>Estimators</subject><subject>generalized least squares</subject><subject>Gross national product</subject><subject>Least squares</subject><subject>linear models</subject><subject>Linear regression</subject><subject>ordinary least squares</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Statistical variance</subject><subject>variance covariance matrix</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqUgXgCJSBw4BWwnteNjVQoFFVWIX3GxHHtNU0JS7BTo22OUqpzgtPLON7ueRWif4BOaYH5KaEoYJhuoQ1LG44xytok6GGMaCyzoNtrxfhaemIisgyaTKmqmEDkoVVPUlZ8W8yiH5hOgFcA3xZtqwEe1jUr4gDJ6qw2UPlKViUxhLTioNKy6u2jLqtLD3qp20f358G4wiseTi8tBfxzrlCUkzoHpLGfGGJGbRFNFueZCZKCNpb0Mm1z0Ui2yXGcE48QqQbFQXCRWEM1znnTRUTt37ur3RfiknNULV4WVklDBeilLBQnUcUtpV3vvwMq5C2ncUhIsf64lV9cKJG7Jz6KE5V-Y7F_1h7-Wg9Yy803tfi1rOW7lwjfwtZaVe5WMJ7wnR0_Pkp09pg-D6yt5E_jDlreqlurFFV7e39IwCFPGQ5j0f4JmIe83kHGUQw</recordid><startdate>198905</startdate><enddate>198905</enddate><creator>Maeshiro, A</creator><creator>Wichers, R</creator><general>Oxford University Press</general><general>American Agricultural Economics Association</general><general>American Farm Economic Association</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>GHEHK</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198905</creationdate><title>On the relationship between the estimates of level models and difference models</title><author>Maeshiro, A ; Wichers, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>applied research</topic><topic>Constant coefficients</topic><topic>differencing</topic><topic>econometric models</topic><topic>Economic models</topic><topic>Estimate reliability</topic><topic>Estimators</topic><topic>generalized least squares</topic><topic>Gross national product</topic><topic>Least squares</topic><topic>linear models</topic><topic>Linear regression</topic><topic>ordinary least squares</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Statistical variance</topic><topic>variance covariance matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeshiro, A</creatorcontrib><creatorcontrib>Wichers, R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 08</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeshiro, A</au><au>Wichers, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relationship between the estimates of level models and difference models</atitle><jtitle>American journal of agricultural economics</jtitle><addtitle>American Journal of Agricultural Economics</addtitle><date>1989-05</date><risdate>1989</risdate><volume>71</volume><issue>2</issue><spage>432</spage><epage>434</epage><pages>432-434</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><abstract>This paper proves that if a linear regression model has a constant term and its disturbances have a positive-definite variance-covariance matrix, its slope coefficients have the same generalized least squares estimates as the slope coefficients of the corresponding difference model. It is also illustrated that if the original model is homogenous (i.e., with no constant term) and/or a constant term is inadvertently included in the difference model and/or the ordinary least squares estimator is adopted for the difference model, one can incur a great loss in estimation efficiency.</abstract><cop>Menasha, Wis</cop><pub>Oxford University Press</pub><doi>10.2307/1241601</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9092 |
ispartof | American journal of agricultural economics, 1989-05, Vol.71 (2), p.432-434 |
issn | 0002-9092 1467-8276 |
language | eng |
recordid | cdi_proquest_journals_1296546491 |
source | EBSCOhost Business Source Ultimate; EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford University Press:Jisc Collections:Oxford Journal Archive: Access period 2024-2025 |
subjects | applied research Constant coefficients differencing econometric models Economic models Estimate reliability Estimators generalized least squares Gross national product Least squares linear models Linear regression ordinary least squares Regression analysis Regression coefficients Statistical variance variance covariance matrix |
title | On the relationship between the estimates of level models and difference models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relationship%20between%20the%20estimates%20of%20level%20models%20and%20difference%20models&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=Maeshiro,%20A&rft.date=1989-05&rft.volume=71&rft.issue=2&rft.spage=432&rft.epage=434&rft.pages=432-434&rft.issn=0002-9092&rft.eissn=1467-8276&rft_id=info:doi/10.2307/1241601&rft_dat=%3Cjstor_proqu%3E1241601%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4631-be6c8b6ddd9bd3c2a27c7998ecdf2580db954c98bc81003fa9209a793f91c7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1296546491&rft_id=info:pmid/&rft_jstor_id=1241601&rfr_iscdi=true |