Loading…

Evaluation of Interface Boundaries in 9Cr-1Mo Steel After Thermal and Thermomechanical Treatments

The grain boundary character distribution (GBCD) and microstructure in 9Cr-1Mo ferritic/martensitic steel subjected to different heat treatments and thermomechanical treatments (TMTs) have been evaluated using electron backscatter diffraction (EBSD) technique. Microstructures obtained through displa...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-04, Vol.44 (4), p.1673-1685
Main Authors: Karthikeyan, T., Dash, Manmath Kumar, Saroja, S., Vijayalakshmi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The grain boundary character distribution (GBCD) and microstructure in 9Cr-1Mo ferritic/martensitic steel subjected to different heat treatments and thermomechanical treatments (TMTs) have been evaluated using electron backscatter diffraction (EBSD) technique. Microstructures obtained through displacive transformation of high-temperature austenite yielded higher amounts of Σ1-29 coincidence site lattice (CSL) boundaries (from 29 to 38 pct) compared with the ferrite grains obtained by diffusional transformation (~16 pct) or by recrystallization process (~14 pct). Specifically, the low-angle (Σ1), Σ3, Σ11, and Σ25b boundaries were enhanced in the tempered martensite substructure, whereas the prior austenite grain boundaries were largely of random type. Misorientation between the product ferrite variants for ideal orientation relationships during austenite transformation was calculated and compared with CSL misorientation to find its proximity based on Brandon’s criteria. The observed enhancements in Σ1, Σ3, and Σ11 could be interpreted based on Kurdjumov–Sachs (K–S) relation, but Nishiyama–Wassermann (N–W) relation was needed to understand Σ25b formation. The amounts of CSL boundaries in the tempered martensite structure were not significantly influenced by austenite grain size or the kinetics of martensitic transformation. In mixed microstructures of “polygonal ferrite + tempered martensite”, the frequencies of CSL boundaries were found to systematically decrease with increasing amounts of diffusional/recrystallized ferrite.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-012-1549-y