Loading…

Central Limit Analogues for Markov Population Processes

It is shown in this paper that several birth-death-type models (univariate as well as multivariate) can be approximated by Ornstein-Uhlenbeck processes as certain parameters become large. Such approximations are valuable whenever the Kolmogorov differential equation cannot be solved in closed form.

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1973-01, Vol.35 (1), p.1-23
Main Authors: McNeil, Donald R., Schach, Siegfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533
cites cdi_FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533
container_end_page 23
container_issue 1
container_start_page 1
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 35
creator McNeil, Donald R.
Schach, Siegfried
description It is shown in this paper that several birth-death-type models (univariate as well as multivariate) can be approximated by Ornstein-Uhlenbeck processes as certain parameters become large. Such approximations are valuable whenever the Kolmogorov differential equation cannot be solved in closed form.
doi_str_mv 10.1111/j.2517-6161.1973.tb00928.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302937386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2985121</jstor_id><sourcerecordid>2985121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533</originalsourceid><addsrcrecordid>eNqVkM1OwzAQhC0EEqXwBhwiOCesvYntcCsVf1IRFYWz5SQOSkjrYqfQvj0Jqbizl11pZ0ajj5ALChHt5qqOWEJFyCmnEU0FRm0GkDIZbQ_I6O91SEYAmIQpi_kxOfG-BgCKMY6ImJpV63QTzKpl1QaTlW7s-8b4oLQueNLuw34Fc7veNLqt7CqYO5sb740_JUelbrw52-8xebu7fZ0-hLPn-8fpZBbmCCDDAphBmaSx5MB4ZiRL81Ij5znGJRZJVhQZp7FMGE8yBFEUFItMC1FyATpBHJPLIXft7GfXq1W13biupVcUgaUoUPJOdT2ocme9d6ZUa1cttdspCqoHpWrV01A9DdWDUntQatuZJ4P5u2rM7h9O9bJY3PzeXcb5kFH71rq_DJbKhDKKP3aFeNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302937386</pqid></control><display><type>article</type><title>Central Limit Analogues for Markov Population Processes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>McNeil, Donald R. ; Schach, Siegfried</creator><creatorcontrib>McNeil, Donald R. ; Schach, Siegfried</creatorcontrib><description>It is shown in this paper that several birth-death-type models (univariate as well as multivariate) can be approximated by Ornstein-Uhlenbeck processes as certain parameters become large. Such approximations are valuable whenever the Kolmogorov differential equation cannot be solved in closed form.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1973.tb00928.x</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>Approximation ; birth and death processes ; convergence of markov processes ; Determinism ; markov population models ; Markov processes ; Mortality ; Ornstein Uhlenbeck process ; ornstein‐uhlenbeck processes ; Perceptron convergence procedure ; Population growth ; Population size ; Stochastic processes ; Transition probabilities</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1973-01, Vol.35 (1), p.1-23</ispartof><rights>1973 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533</citedby><cites>FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2985121$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2985121$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>McNeil, Donald R.</creatorcontrib><creatorcontrib>Schach, Siegfried</creatorcontrib><title>Central Limit Analogues for Markov Population Processes</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>It is shown in this paper that several birth-death-type models (univariate as well as multivariate) can be approximated by Ornstein-Uhlenbeck processes as certain parameters become large. Such approximations are valuable whenever the Kolmogorov differential equation cannot be solved in closed form.</description><subject>Approximation</subject><subject>birth and death processes</subject><subject>convergence of markov processes</subject><subject>Determinism</subject><subject>markov population models</subject><subject>Markov processes</subject><subject>Mortality</subject><subject>Ornstein Uhlenbeck process</subject><subject>ornstein‐uhlenbeck processes</subject><subject>Perceptron convergence procedure</subject><subject>Population growth</subject><subject>Population size</subject><subject>Stochastic processes</subject><subject>Transition probabilities</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNqVkM1OwzAQhC0EEqXwBhwiOCesvYntcCsVf1IRFYWz5SQOSkjrYqfQvj0Jqbizl11pZ0ajj5ALChHt5qqOWEJFyCmnEU0FRm0GkDIZbQ_I6O91SEYAmIQpi_kxOfG-BgCKMY6ImJpV63QTzKpl1QaTlW7s-8b4oLQueNLuw34Fc7veNLqt7CqYO5sb740_JUelbrw52-8xebu7fZ0-hLPn-8fpZBbmCCDDAphBmaSx5MB4ZiRL81Ij5znGJRZJVhQZp7FMGE8yBFEUFItMC1FyATpBHJPLIXft7GfXq1W13biupVcUgaUoUPJOdT2ocme9d6ZUa1cttdspCqoHpWrV01A9DdWDUntQatuZJ4P5u2rM7h9O9bJY3PzeXcb5kFH71rq_DJbKhDKKP3aFeNg</recordid><startdate>19730101</startdate><enddate>19730101</enddate><creator>McNeil, Donald R.</creator><creator>Schach, Siegfried</creator><general>Royal Statistical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19730101</creationdate><title>Central Limit Analogues for Markov Population Processes</title><author>McNeil, Donald R. ; Schach, Siegfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Approximation</topic><topic>birth and death processes</topic><topic>convergence of markov processes</topic><topic>Determinism</topic><topic>markov population models</topic><topic>Markov processes</topic><topic>Mortality</topic><topic>Ornstein Uhlenbeck process</topic><topic>ornstein‐uhlenbeck processes</topic><topic>Perceptron convergence procedure</topic><topic>Population growth</topic><topic>Population size</topic><topic>Stochastic processes</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNeil, Donald R.</creatorcontrib><creatorcontrib>Schach, Siegfried</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNeil, Donald R.</au><au>Schach, Siegfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central Limit Analogues for Markov Population Processes</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1973-01-01</date><risdate>1973</risdate><volume>35</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><abstract>It is shown in this paper that several birth-death-type models (univariate as well as multivariate) can be approximated by Ornstein-Uhlenbeck processes as certain parameters become large. Such approximations are valuable whenever the Kolmogorov differential equation cannot be solved in closed form.</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.1111/j.2517-6161.1973.tb00928.x</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1973-01, Vol.35 (1), p.1-23
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302937386
source JSTOR Archival Journals and Primary Sources Collection
subjects Approximation
birth and death processes
convergence of markov processes
Determinism
markov population models
Markov processes
Mortality
Ornstein Uhlenbeck process
ornstein‐uhlenbeck processes
Perceptron convergence procedure
Population growth
Population size
Stochastic processes
Transition probabilities
title Central Limit Analogues for Markov Population Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20Limit%20Analogues%20for%20Markov%20Population%20Processes&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=McNeil,%20Donald%20R.&rft.date=1973-01-01&rft.volume=35&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0035-9246&rft.eissn=2517-6161&rft_id=info:doi/10.1111/j.2517-6161.1973.tb00928.x&rft_dat=%3Cjstor_proqu%3E2985121%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3008-d02e3859486026be829cfa366c34f3d5bddb61485265b307dd13dba77f670a533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1302937386&rft_id=info:pmid/&rft_jstor_id=2985121&rfr_iscdi=true