Loading…

Simultaneous Confidence Intervals for Product-Type Interaction Contrasts

The set of product-type interaction contrasts, which contains the subsets of interaction residuals, tetrad contrasts, double-dichotomy contrasts and pooled-tetrad contrasts, is discussed. In the Normal case with equal and known variances, simultaneous confidence intervals for a given set of such con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1973-01, Vol.35 (2), p.234-244
Main Authors: Gabriel, K. R., Putter, J., Wax, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93
cites cdi_FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93
container_end_page 244
container_issue 2
container_start_page 234
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 35
creator Gabriel, K. R.
Putter, J.
Wax, Y.
description The set of product-type interaction contrasts, which contains the subsets of interaction residuals, tetrad contrasts, double-dichotomy contrasts and pooled-tetrad contrasts, is discussed. In the Normal case with equal and known variances, simultaneous confidence intervals for a given set of such contrasts can be constructed in several ways. Five such methods (the Scheffe method, the Tukey method, the Dunn method, a method based on Roy's maximum-root statistic and a modification of Tukey's method) are presented and compared in terms of the widths of the resulting 95 and 99 per cent confidence intervals. The Dunn method is found to yield the shortest intervals for interaction residuals, for tetrad contrasts and for double-dichotomy contrasts. On the other hand, for the set of pooled-tetrad contrasts, and therefore also for any larger set of product-type interaction contrasts, the maximum-root method yields the shortest intervals. A table of the half-widths of the intervals given by the recommended methods is provided.
doi_str_mv 10.1111/j.2517-6161.1973.tb00954.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302938635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2984908</jstor_id><sourcerecordid>2984908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93</originalsourceid><addsrcrecordid>eNqVkF1LwzAUhoMoOKf_wIui1635XuPdHOoGA8XN65CmCbRszUxS3f69rR2799ycA-_HgQeAOwQz1M1DnWGGJilHHGVITEgWCwgFo9n-DIxO0jkYQUhYKjDll-AqhBpCiAglIzBfVdt2E1VjXBuSmWtsVZpGm2TRROO_1SYk1vnk3buy1TFdH3ZHSelYuaZPRK9CDNfgwnZuc3PcY_D58ryezdPl2-tiNl2mmkBIU6xJYTRmykJV2lwowuyEGlWUpWUca06JYpRZgrXIFRcUC0IIxZijwjAlyBjcD707775aE6KsXeub7qVEBHbunBPWuR4Hl_YuBG-s3Plqq_xBIih7crKWPR7Z45E9OXkkJ_ddeDqEf6qNOfwjKT9Wq6e_u-u4HTrqEJ0_dWCRUwFz8gv6voBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302938635</pqid></control><display><type>article</type><title>Simultaneous Confidence Intervals for Product-Type Interaction Contrasts</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Gabriel, K. R. ; Putter, J. ; Wax, Y.</creator><creatorcontrib>Gabriel, K. R. ; Putter, J. ; Wax, Y.</creatorcontrib><description>The set of product-type interaction contrasts, which contains the subsets of interaction residuals, tetrad contrasts, double-dichotomy contrasts and pooled-tetrad contrasts, is discussed. In the Normal case with equal and known variances, simultaneous confidence intervals for a given set of such contrasts can be constructed in several ways. Five such methods (the Scheffe method, the Tukey method, the Dunn method, a method based on Roy's maximum-root statistic and a modification of Tukey's method) are presented and compared in terms of the widths of the resulting 95 and 99 per cent confidence intervals. The Dunn method is found to yield the shortest intervals for interaction residuals, for tetrad contrasts and for double-dichotomy contrasts. On the other hand, for the set of pooled-tetrad contrasts, and therefore also for any larger set of product-type interaction contrasts, the maximum-root method yields the shortest intervals. A table of the half-widths of the intervals given by the recommended methods is provided.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1973.tb00954.x</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>Analysis of variance ; Confidence interval ; contrasts ; Degrees of freedom ; Direct products ; Eigenvalues ; Estimators ; interaction ; Mathematical vectors ; Matrices ; maximum characteristic root ; multiple comparisons ; simultaneous confidence intervals ; Statistical discrepancies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1973-01, Vol.35 (2), p.234-244</ispartof><rights>1973 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93</citedby><cites>FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2984908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2984908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58217,58450</link.rule.ids></links><search><creatorcontrib>Gabriel, K. R.</creatorcontrib><creatorcontrib>Putter, J.</creatorcontrib><creatorcontrib>Wax, Y.</creatorcontrib><title>Simultaneous Confidence Intervals for Product-Type Interaction Contrasts</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>The set of product-type interaction contrasts, which contains the subsets of interaction residuals, tetrad contrasts, double-dichotomy contrasts and pooled-tetrad contrasts, is discussed. In the Normal case with equal and known variances, simultaneous confidence intervals for a given set of such contrasts can be constructed in several ways. Five such methods (the Scheffe method, the Tukey method, the Dunn method, a method based on Roy's maximum-root statistic and a modification of Tukey's method) are presented and compared in terms of the widths of the resulting 95 and 99 per cent confidence intervals. The Dunn method is found to yield the shortest intervals for interaction residuals, for tetrad contrasts and for double-dichotomy contrasts. On the other hand, for the set of pooled-tetrad contrasts, and therefore also for any larger set of product-type interaction contrasts, the maximum-root method yields the shortest intervals. A table of the half-widths of the intervals given by the recommended methods is provided.</description><subject>Analysis of variance</subject><subject>Confidence interval</subject><subject>contrasts</subject><subject>Degrees of freedom</subject><subject>Direct products</subject><subject>Eigenvalues</subject><subject>Estimators</subject><subject>interaction</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>maximum characteristic root</subject><subject>multiple comparisons</subject><subject>simultaneous confidence intervals</subject><subject>Statistical discrepancies</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNqVkF1LwzAUhoMoOKf_wIui1635XuPdHOoGA8XN65CmCbRszUxS3f69rR2799ycA-_HgQeAOwQz1M1DnWGGJilHHGVITEgWCwgFo9n-DIxO0jkYQUhYKjDll-AqhBpCiAglIzBfVdt2E1VjXBuSmWtsVZpGm2TRROO_1SYk1vnk3buy1TFdH3ZHSelYuaZPRK9CDNfgwnZuc3PcY_D58ryezdPl2-tiNl2mmkBIU6xJYTRmykJV2lwowuyEGlWUpWUca06JYpRZgrXIFRcUC0IIxZijwjAlyBjcD707775aE6KsXeub7qVEBHbunBPWuR4Hl_YuBG-s3Plqq_xBIih7crKWPR7Z45E9OXkkJ_ddeDqEf6qNOfwjKT9Wq6e_u-u4HTrqEJ0_dWCRUwFz8gv6voBf</recordid><startdate>19730101</startdate><enddate>19730101</enddate><creator>Gabriel, K. R.</creator><creator>Putter, J.</creator><creator>Wax, Y.</creator><general>Royal Statistical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19730101</creationdate><title>Simultaneous Confidence Intervals for Product-Type Interaction Contrasts</title><author>Gabriel, K. R. ; Putter, J. ; Wax, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Analysis of variance</topic><topic>Confidence interval</topic><topic>contrasts</topic><topic>Degrees of freedom</topic><topic>Direct products</topic><topic>Eigenvalues</topic><topic>Estimators</topic><topic>interaction</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>maximum characteristic root</topic><topic>multiple comparisons</topic><topic>simultaneous confidence intervals</topic><topic>Statistical discrepancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabriel, K. R.</creatorcontrib><creatorcontrib>Putter, J.</creatorcontrib><creatorcontrib>Wax, Y.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriel, K. R.</au><au>Putter, J.</au><au>Wax, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Confidence Intervals for Product-Type Interaction Contrasts</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1973-01-01</date><risdate>1973</risdate><volume>35</volume><issue>2</issue><spage>234</spage><epage>244</epage><pages>234-244</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><abstract>The set of product-type interaction contrasts, which contains the subsets of interaction residuals, tetrad contrasts, double-dichotomy contrasts and pooled-tetrad contrasts, is discussed. In the Normal case with equal and known variances, simultaneous confidence intervals for a given set of such contrasts can be constructed in several ways. Five such methods (the Scheffe method, the Tukey method, the Dunn method, a method based on Roy's maximum-root statistic and a modification of Tukey's method) are presented and compared in terms of the widths of the resulting 95 and 99 per cent confidence intervals. The Dunn method is found to yield the shortest intervals for interaction residuals, for tetrad contrasts and for double-dichotomy contrasts. On the other hand, for the set of pooled-tetrad contrasts, and therefore also for any larger set of product-type interaction contrasts, the maximum-root method yields the shortest intervals. A table of the half-widths of the intervals given by the recommended methods is provided.</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.1111/j.2517-6161.1973.tb00954.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1973-01, Vol.35 (2), p.234-244
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302938635
source JSTOR Archival Journals and Primary Sources Collection
subjects Analysis of variance
Confidence interval
contrasts
Degrees of freedom
Direct products
Eigenvalues
Estimators
interaction
Mathematical vectors
Matrices
maximum characteristic root
multiple comparisons
simultaneous confidence intervals
Statistical discrepancies
title Simultaneous Confidence Intervals for Product-Type Interaction Contrasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Confidence%20Intervals%20for%20Product-Type%20Interaction%20Contrasts&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Gabriel,%20K.%20R.&rft.date=1973-01-01&rft.volume=35&rft.issue=2&rft.spage=234&rft.epage=244&rft.pages=234-244&rft.issn=0035-9246&rft.eissn=2517-6161&rft_id=info:doi/10.1111/j.2517-6161.1973.tb00954.x&rft_dat=%3Cjstor_proqu%3E2984908%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3004-2c3bec25af0adf89a35f74eabddf562c643a545f32c98a6942933342261be5a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1302938635&rft_id=info:pmid/&rft_jstor_id=2984908&rfr_iscdi=true