Loading…

Asymptotic Sequential Design of Experiments with Two Random Variables

Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1966-01, Vol.28 (1), p.73-87
Main Author: Abramson, Lee R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3
cites cdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3
container_end_page 87
container_issue 1
container_start_page 73
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 28
creator Abramson, Lee R.
description Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)
doi_str_mv 10.1111/j.2517-6161.1966.tb00622.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302953379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2984275</jstor_id><sourcerecordid>2984275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</originalsourceid><addsrcrecordid>eNqVkMtOwzAQRS0EEqXwBywsWCf4FTthV0p5SEhIbWFrOYkNidK42Kna_j0OqbpnNh6N771jHwBuMIpxqLs6JgkWEcccxzjjPO5yhDgh8e4EjI5Xp2CEEE2ijDB-Di68rxFCmDI6ArOJ36_Wne2qAi70z0a3XaUa-Kh99dVCa-Bst9auWoW5h9uq-4bLrYVz1ZZ2BT-Vq1TeaH8JzoxqvL46nGPw8TRbTl-it_fn1-nkLSoITkhEDE_TknKDcJnSUhNmBKUKI8Y5RUWuc4ao4SgtdSYyLFgqciNQqRlWWUILOga3Q-7a2fBW38nablwbVkpMEQkaKrKguh9UhbPeO23kOvxAub3ESPbYZC17NrJnI3ts8oBN7oJ5Mpi3VaP3_3DK-WLx8NeHjOsho_addccMkqWMiIT-AqeIfeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302953379</pqid></control><display><type>article</type><title>Asymptotic Sequential Design of Experiments with Two Random Variables</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Abramson, Lee R.</creator><creatorcontrib>Abramson, Lee R.</creatorcontrib><description>Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1966.tb00622.x</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>Error rates ; Experiment design ; Mathematics ; Probability distributions ; Random variables ; Ratio test ; Sample size ; Sufficient conditions ; Tariff drawbacks ; Variable costs</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1966-01, Vol.28 (1), p.73-87</ispartof><rights>1966 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</citedby><cites>FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2984275$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2984275$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,58212,58445</link.rule.ids></links><search><creatorcontrib>Abramson, Lee R.</creatorcontrib><title>Asymptotic Sequential Design of Experiments with Two Random Variables</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)</description><subject>Error rates</subject><subject>Experiment design</subject><subject>Mathematics</subject><subject>Probability distributions</subject><subject>Random variables</subject><subject>Ratio test</subject><subject>Sample size</subject><subject>Sufficient conditions</subject><subject>Tariff drawbacks</subject><subject>Variable costs</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOwzAQRS0EEqXwBywsWCf4FTthV0p5SEhIbWFrOYkNidK42Kna_j0OqbpnNh6N771jHwBuMIpxqLs6JgkWEcccxzjjPO5yhDgh8e4EjI5Xp2CEEE2ijDB-Di68rxFCmDI6ArOJ36_Wne2qAi70z0a3XaUa-Kh99dVCa-Bst9auWoW5h9uq-4bLrYVz1ZZ2BT-Vq1TeaH8JzoxqvL46nGPw8TRbTl-it_fn1-nkLSoITkhEDE_TknKDcJnSUhNmBKUKI8Y5RUWuc4ao4SgtdSYyLFgqciNQqRlWWUILOga3Q-7a2fBW38nablwbVkpMEQkaKrKguh9UhbPeO23kOvxAub3ESPbYZC17NrJnI3ts8oBN7oJ5Mpi3VaP3_3DK-WLx8NeHjOsho_addccMkqWMiIT-AqeIfeI</recordid><startdate>19660101</startdate><enddate>19660101</enddate><creator>Abramson, Lee R.</creator><general>Royal Statistical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19660101</creationdate><title>Asymptotic Sequential Design of Experiments with Two Random Variables</title><author>Abramson, Lee R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><topic>Error rates</topic><topic>Experiment design</topic><topic>Mathematics</topic><topic>Probability distributions</topic><topic>Random variables</topic><topic>Ratio test</topic><topic>Sample size</topic><topic>Sufficient conditions</topic><topic>Tariff drawbacks</topic><topic>Variable costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramson, Lee R.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramson, Lee R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Sequential Design of Experiments with Two Random Variables</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1966-01-01</date><risdate>1966</risdate><volume>28</volume><issue>1</issue><spage>73</spage><epage>87</epage><pages>73-87</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><abstract>Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.1111/j.2517-6161.1966.tb00622.x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1966-01, Vol.28 (1), p.73-87
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302953379
source JSTOR Archival Journals and Primary Sources Collection
subjects Error rates
Experiment design
Mathematics
Probability distributions
Random variables
Ratio test
Sample size
Sufficient conditions
Tariff drawbacks
Variable costs
title Asymptotic Sequential Design of Experiments with Two Random Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T13%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Sequential%20Design%20of%20Experiments%20with%20Two%20Random%20Variables&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Abramson,%20Lee%20R.&rft.date=1966-01-01&rft.volume=28&rft.issue=1&rft.spage=73&rft.epage=87&rft.pages=73-87&rft.issn=0035-9246&rft.eissn=2517-6161&rft_id=info:doi/10.1111/j.2517-6161.1966.tb00622.x&rft_dat=%3Cjstor_proqu%3E2984275%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1302953379&rft_id=info:pmid/&rft_jstor_id=2984275&rfr_iscdi=true