Loading…
Asymptotic Sequential Design of Experiments with Two Random Variables
Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1966-01, Vol.28 (1), p.73-87 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3 |
container_end_page | 87 |
container_issue | 1 |
container_start_page | 73 |
container_title | Journal of the Royal Statistical Society. Series B, Methodological |
container_volume | 28 |
creator | Abramson, Lee R. |
description | Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.) |
doi_str_mv | 10.1111/j.2517-6161.1966.tb00622.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302953379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2984275</jstor_id><sourcerecordid>2984275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</originalsourceid><addsrcrecordid>eNqVkMtOwzAQRS0EEqXwBywsWCf4FTthV0p5SEhIbWFrOYkNidK42Kna_j0OqbpnNh6N771jHwBuMIpxqLs6JgkWEcccxzjjPO5yhDgh8e4EjI5Xp2CEEE2ijDB-Di68rxFCmDI6ArOJ36_Wne2qAi70z0a3XaUa-Kh99dVCa-Bst9auWoW5h9uq-4bLrYVz1ZZ2BT-Vq1TeaH8JzoxqvL46nGPw8TRbTl-it_fn1-nkLSoITkhEDE_TknKDcJnSUhNmBKUKI8Y5RUWuc4ao4SgtdSYyLFgqciNQqRlWWUILOga3Q-7a2fBW38nablwbVkpMEQkaKrKguh9UhbPeO23kOvxAub3ESPbYZC17NrJnI3ts8oBN7oJ5Mpi3VaP3_3DK-WLx8NeHjOsho_addccMkqWMiIT-AqeIfeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302953379</pqid></control><display><type>article</type><title>Asymptotic Sequential Design of Experiments with Two Random Variables</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Abramson, Lee R.</creator><creatorcontrib>Abramson, Lee R.</creatorcontrib><description>Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1966.tb00622.x</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>Error rates ; Experiment design ; Mathematics ; Probability distributions ; Random variables ; Ratio test ; Sample size ; Sufficient conditions ; Tariff drawbacks ; Variable costs</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1966-01, Vol.28 (1), p.73-87</ispartof><rights>1966 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</citedby><cites>FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2984275$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2984275$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,58212,58445</link.rule.ids></links><search><creatorcontrib>Abramson, Lee R.</creatorcontrib><title>Asymptotic Sequential Design of Experiments with Two Random Variables</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)</description><subject>Error rates</subject><subject>Experiment design</subject><subject>Mathematics</subject><subject>Probability distributions</subject><subject>Random variables</subject><subject>Ratio test</subject><subject>Sample size</subject><subject>Sufficient conditions</subject><subject>Tariff drawbacks</subject><subject>Variable costs</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOwzAQRS0EEqXwBywsWCf4FTthV0p5SEhIbWFrOYkNidK42Kna_j0OqbpnNh6N771jHwBuMIpxqLs6JgkWEcccxzjjPO5yhDgh8e4EjI5Xp2CEEE2ijDB-Di68rxFCmDI6ArOJ36_Wne2qAi70z0a3XaUa-Kh99dVCa-Bst9auWoW5h9uq-4bLrYVz1ZZ2BT-Vq1TeaH8JzoxqvL46nGPw8TRbTl-it_fn1-nkLSoITkhEDE_TknKDcJnSUhNmBKUKI8Y5RUWuc4ao4SgtdSYyLFgqciNQqRlWWUILOga3Q-7a2fBW38nablwbVkpMEQkaKrKguh9UhbPeO23kOvxAub3ESPbYZC17NrJnI3ts8oBN7oJ5Mpi3VaP3_3DK-WLx8NeHjOsho_addccMkqWMiIT-AqeIfeI</recordid><startdate>19660101</startdate><enddate>19660101</enddate><creator>Abramson, Lee R.</creator><general>Royal Statistical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19660101</creationdate><title>Asymptotic Sequential Design of Experiments with Two Random Variables</title><author>Abramson, Lee R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><topic>Error rates</topic><topic>Experiment design</topic><topic>Mathematics</topic><topic>Probability distributions</topic><topic>Random variables</topic><topic>Ratio test</topic><topic>Sample size</topic><topic>Sufficient conditions</topic><topic>Tariff drawbacks</topic><topic>Variable costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramson, Lee R.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramson, Lee R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Sequential Design of Experiments with Two Random Variables</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1966-01-01</date><risdate>1966</risdate><volume>28</volume><issue>1</issue><spage>73</spage><epage>87</epage><pages>73-87</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><abstract>Given two independent random variables with densities f1 and f2, we test H1:f1=f11,f2=f12 versus H2:f1=f21,f2=f22, where the fij are known densities (i,j=1,2). We study asymptotic Bayes sequential procedures as the cost of each observation approaches zero. An asymptotic expression for the Bayes risk is found, and necessary and sufficient conditions for a decision rule to be asymptotically Bayes are derived. We study a class of tests which we call tandem tests and construct an asymptotically Bayes set of tandem tests. (A tandem test is a sequence of at most two sequential probability ratio tests, the first performed on one of the random variables and the second performed on the other.)</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.1111/j.2517-6161.1966.tb00622.x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9246 |
ispartof | Journal of the Royal Statistical Society. Series B, Methodological, 1966-01, Vol.28 (1), p.73-87 |
issn | 0035-9246 1369-7412 2517-6161 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_1302953379 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Error rates Experiment design Mathematics Probability distributions Random variables Ratio test Sample size Sufficient conditions Tariff drawbacks Variable costs |
title | Asymptotic Sequential Design of Experiments with Two Random Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T13%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Sequential%20Design%20of%20Experiments%20with%20Two%20Random%20Variables&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Abramson,%20Lee%20R.&rft.date=1966-01-01&rft.volume=28&rft.issue=1&rft.spage=73&rft.epage=87&rft.pages=73-87&rft.issn=0035-9246&rft.eissn=2517-6161&rft_id=info:doi/10.1111/j.2517-6161.1966.tb00622.x&rft_dat=%3Cjstor_proqu%3E2984275%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2152-2f688d36f01d83de24f733a1046630cbeb403f608de97917487bf70de41a953c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1302953379&rft_id=info:pmid/&rft_jstor_id=2984275&rfr_iscdi=true |