Loading…
Physical structure of white clover, rape, spurrey and perennial ryegrass in relation to rate of intake by sheep, chewing activity and particle breakdown
Four plant species were compared in each of three harvest periods (in August/September) in 1991 and 1992 at Aberystwyth: white clover (Trifolium repens L.), rape (Brassica napus L.), spurrey (Spergula arvensis L.) and perennial ryegrass (Lolium perenne L.). Plant physical structure was considered in...
Saved in:
Published in: | Journal of Agricultural Science 1995-08, Vol.125 (1), p.43-50 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Four plant species were compared in each of three harvest periods (in August/September) in 1991 and 1992 at Aberystwyth: white clover (Trifolium repens L.), rape (Brassica napus L.), spurrey (Spergula arvensis L.) and perennial ryegrass (Lolium perenne L.). Plant physical structure was considered in relation to rate of intake by sheep, chewing activity and the effectiveness of chewing in breaking the diet into particles. White clover had a much lower proportion of cell wall than perennial ryegrass, but the rate of intake and the number of chews per min were similar for the two species. White clover petioles broke down into long, thin particles, similar in size and shape to those derived from perennial ryegrass leaf sheaths; many of the clover petioles were not split longitudinally by chewing, in contrast to the ryegrass sheaths. A white clover leaflet was typically broken into about 20 blocky particles, whereas a petiole of similar weight was broken into only about three particles. Veins were close together in ryegrass leaf sheaths and blades, particularly the latter; approximately one in seven strips of weaker tissue between veins was ruptured by chewing leaf sheaths and one in 16 in the case of leaf blades, in each case resulting in particles of c. 2 mm width. Rape had a low proportion of cell wall and a low proportion of vascular tissue in its leaf blades, petioles and stems. Rape leaf blades were eaten quickly, but the stems were eaten slowly. The length and width of particles derived from rape leaf blades were very similar to those of particles derived from white clover leaflets. Spurrey had a high proportion of cell wall and was low in in vitro digestibility, but the rates of intake and chewing were high and relatively few chews were required per g of dry matter ingested. The vascular bundles in the spurrey stems were only half the thickness of the bundles in white clover petioles; pieces of spurrey stem were typically broken at about two places along their length and were not split during eating. The study illustrates the wide variation in plant anatomy among species which can be available to herbivores and some effects of the abundance, thickness and orientation of vascular bundles on rate of intake, chewing activity and the size and shape of particles produced by chewing. |
---|---|
ISSN: | 0021-8596 1469-5146 |
DOI: | 10.1017/S0021859600074487 |