Loading…
The Linear Model with Restricted Explanatory Variables
Linear models with linear equality constraints on the coefficients are translated into models with a singular design matrix and a nonsingular disturbances covariance matrix in order to deduce general conditions for estimability and testability. Simplifications of the recursive least squares algorith...
Saved in:
Published in: | International statistical review 1991-12, Vol.59 (3), p.279-285 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linear models with linear equality constraints on the coefficients are translated into models with a singular design matrix and a nonsingular disturbances covariance matrix in order to deduce general conditions for estimability and testability. Simplifications of the recursive least squares algorithm for the singular case are discussed. /// Afin de trouver des conditions assurant que certains paramètres soient estimables et que certaines hypothèses soient testables, on transforme des modèles linéaires où les paramètres sont constraints par des équations linéaires en modèles dont la matrice de variables explicatives est singulière mais celle des covariances est non-singulière. On discute des simplifications de l'algorithme des moindres carrés itérés. |
---|---|
ISSN: | 0306-7734 1751-5823 |
DOI: | 10.2307/1403688 |