Loading…

Nonlinear predictive control based on neural multi-models

Nonlinear predictive control based on neural multi-models This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied mathematics and computer science 2010-03, Vol.20 (1), p.7
Main Authors: Lawrynczuk, Maciej, Tatjewski, Piotr
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-c1c8c1f86f87d8c22ba37e7752e57d15b33e60e3c3c972d5ebc976ab932a8dbd3
cites
container_end_page
container_issue 1
container_start_page 7
container_title International journal of applied mathematics and computer science
container_volume 20
creator Lawrynczuk, Maciej
Tatjewski, Piotr
description Nonlinear predictive control based on neural multi-models This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.
doi_str_mv 10.2478/v10006-010-0001-y
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1321091788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929128141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c1c8c1f86f87d8c22ba37e7752e57d15b33e60e3c3c972d5ebc976ab932a8dbd3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMoONR-gLuA62huMnnMUoovKLpRcFfyuAMjaVKTmYJ_b0FX56zOIeQa-K3ojb07AudcMw6cnQTYzxnpBLeS2X4Q56QD3QOzRn9eknVrk-dgpFXA-44MryWnKaOr9FAxTmGejkhDyXMtiXrXMNKSacalukT3S5onti8RU7siF6NLDdf_XJGPx4f3zTPbvj29bO63LEjVzyxAsAFGq0drog1CeCcNGqMEKhNBeSlRc5RBhsGIqNCfqJ0fpHA2-ihX5Oave6jle8E2777KUvNpuQMpgA9grJW_UvBK8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321091788</pqid></control><display><type>article</type><title>Nonlinear predictive control based on neural multi-models</title><source>Freely Accessible Science Journals</source><source>Publicly Available Content Database</source><creator>Lawrynczuk, Maciej ; Tatjewski, Piotr</creator><creatorcontrib>Lawrynczuk, Maciej ; Tatjewski, Piotr</creatorcontrib><description>Nonlinear predictive control based on neural multi-models This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.</description><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.2478/v10006-010-0001-y</identifier><language>eng</language><publisher>Zielona Góra: De Gruyter Poland</publisher><ispartof>International journal of applied mathematics and computer science, 2010-03, Vol.20 (1), p.7</ispartof><rights>Copyright Versita Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c1c8c1f86f87d8c22ba37e7752e57d15b33e60e3c3c972d5ebc976ab932a8dbd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1321091788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25735,27906,27907,36994,44572</link.rule.ids></links><search><creatorcontrib>Lawrynczuk, Maciej</creatorcontrib><creatorcontrib>Tatjewski, Piotr</creatorcontrib><title>Nonlinear predictive control based on neural multi-models</title><title>International journal of applied mathematics and computer science</title><description>Nonlinear predictive control based on neural multi-models This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.</description><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMoONR-gLuA62huMnnMUoovKLpRcFfyuAMjaVKTmYJ_b0FX56zOIeQa-K3ojb07AudcMw6cnQTYzxnpBLeS2X4Q56QD3QOzRn9eknVrk-dgpFXA-44MryWnKaOr9FAxTmGejkhDyXMtiXrXMNKSacalukT3S5onti8RU7siF6NLDdf_XJGPx4f3zTPbvj29bO63LEjVzyxAsAFGq0drog1CeCcNGqMEKhNBeSlRc5RBhsGIqNCfqJ0fpHA2-ihX5Oave6jle8E2777KUvNpuQMpgA9grJW_UvBK8w</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Lawrynczuk, Maciej</creator><creator>Tatjewski, Piotr</creator><general>De Gruyter Poland</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100301</creationdate><title>Nonlinear predictive control based on neural multi-models</title><author>Lawrynczuk, Maciej ; Tatjewski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c1c8c1f86f87d8c22ba37e7752e57d15b33e60e3c3c972d5ebc976ab932a8dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrynczuk, Maciej</creatorcontrib><creatorcontrib>Tatjewski, Piotr</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrynczuk, Maciej</au><au>Tatjewski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear predictive control based on neural multi-models</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>20</volume><issue>1</issue><spage>7</spage><pages>7-</pages><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>Nonlinear predictive control based on neural multi-models This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.</abstract><cop>Zielona Góra</cop><pub>De Gruyter Poland</pub><doi>10.2478/v10006-010-0001-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1641-876X
ispartof International journal of applied mathematics and computer science, 2010-03, Vol.20 (1), p.7
issn 1641-876X
2083-8492
language eng
recordid cdi_proquest_journals_1321091788
source Freely Accessible Science Journals; Publicly Available Content Database
title Nonlinear predictive control based on neural multi-models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20predictive%20control%20based%20on%20neural%20multi-models&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Lawrynczuk,%20Maciej&rft.date=2010-03-01&rft.volume=20&rft.issue=1&rft.spage=7&rft.pages=7-&rft.issn=1641-876X&rft.eissn=2083-8492&rft_id=info:doi/10.2478/v10006-010-0001-y&rft_dat=%3Cproquest%3E2929128141%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-c1c8c1f86f87d8c22ba37e7752e57d15b33e60e3c3c972d5ebc976ab932a8dbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1321091788&rft_id=info:pmid/&rfr_iscdi=true