Loading…

The Asymptotic Existence of Resolvable Group Divisible Designs

A group divisible design (GDD) is a triple (X,G,B) which satisfies the following properties: (1) G is a partition of X into subsets called groups; (2) B is a collection of subsets of X, called blocks, such that a group and a block contain at most one element in common; and (3) every pair of elements...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial designs 2013-03, Vol.21 (3), p.112-126
Main Authors: Chan, Justin H., Dukes, Peter J., Lamken, Esther R., Ling, Alan C.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663
cites cdi_FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663
container_end_page 126
container_issue 3
container_start_page 112
container_title Journal of combinatorial designs
container_volume 21
creator Chan, Justin H.
Dukes, Peter J.
Lamken, Esther R.
Ling, Alan C.H.
description A group divisible design (GDD) is a triple (X,G,B) which satisfies the following properties: (1) G is a partition of X into subsets called groups; (2) B is a collection of subsets of X, called blocks, such that a group and a block contain at most one element in common; and (3) every pair of elements from distinct groups occurs in a constant number λ blocks. This parameter λ is usually called the index. A k‐GDD of type gu is a GDD with block size k, index λ=1, and u groups of size g. A GDD is resolvable if the blocks can be partitioned into classes such that each point occurs in precisely one block of each class. We denote such a design as an RGDD. For fixed integers g≥1 and k≥2, we show that the necessary conditions for the existence of a k‐RGDD of type gu are sufficient for all u≥u0(g,k). As a corollary of this result and the existence of large resolvable graph decompositions, we establish the asymptotic existence of resolvable graph GDDs, G‐RGDDs, whenever the necessary conditions for the existence of (v,G,1)‐RGDs are met. We also show that, with a few easy modifications, the techniques extend to general index. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21: 112–126, 2013
doi_str_mv 10.1002/jcd.21315
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1321947065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932429561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663</originalsourceid><addsrcrecordid>eNp1kEFLwzAUgIMoOKcH_0HBk4duL0mTtBdhdHMqQ2FMBS-hTRPN7NaZdHP793ZWvXnKC3zfe_AhdI6hhwFIf66KHsEUswPUwYxAyDmGw2YGTsOY0eQYnXg_B4AkobyDrmZvOhj43WJVV7VVwWhrfa2XSgeVCabaV-Umy0sdjF21XgVDu7He7v9D7e3r0p-iI5OVXp_9vF30eD2apTfh5GF8mw4moaICWMhIwU0hgOokNrHhkTAEC1aAUEpDhHWsKc3ypIhoDpxFOaZGkSxjmIo44px20UW7d-Wqj7X2tZxXa7dsTkpMCU4i0WgNddlSylXeO23kytlF5nYSg9znkU0e-Z2nYfst-2lLvfsflHfp8NcIW2NfaPtnZO5dckEFk8_3Y5k-TYlg4kUS-gU-DnOr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321947065</pqid></control><display><type>article</type><title>The Asymptotic Existence of Resolvable Group Divisible Designs</title><source>Wiley</source><creator>Chan, Justin H. ; Dukes, Peter J. ; Lamken, Esther R. ; Ling, Alan C.H.</creator><creatorcontrib>Chan, Justin H. ; Dukes, Peter J. ; Lamken, Esther R. ; Ling, Alan C.H.</creatorcontrib><description>A group divisible design (GDD) is a triple (X,G,B) which satisfies the following properties: (1) G is a partition of X into subsets called groups; (2) B is a collection of subsets of X, called blocks, such that a group and a block contain at most one element in common; and (3) every pair of elements from distinct groups occurs in a constant number λ blocks. This parameter λ is usually called the index. A k‐GDD of type gu is a GDD with block size k, index λ=1, and u groups of size g. A GDD is resolvable if the blocks can be partitioned into classes such that each point occurs in precisely one block of each class. We denote such a design as an RGDD. For fixed integers g≥1 and k≥2, we show that the necessary conditions for the existence of a k‐RGDD of type gu are sufficient for all u≥u0(g,k). As a corollary of this result and the existence of large resolvable graph decompositions, we establish the asymptotic existence of resolvable graph GDDs, G‐RGDDs, whenever the necessary conditions for the existence of (v,G,1)‐RGDs are met. We also show that, with a few easy modifications, the techniques extend to general index. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21: 112–126, 2013</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21315</identifier><identifier>CODEN: JDESEU</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>frame design ; graph decomposition ; group divisible design ; resolvable design ; Studies</subject><ispartof>Journal of combinatorial designs, 2013-03, Vol.21 (3), p.112-126</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663</citedby><cites>FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chan, Justin H.</creatorcontrib><creatorcontrib>Dukes, Peter J.</creatorcontrib><creatorcontrib>Lamken, Esther R.</creatorcontrib><creatorcontrib>Ling, Alan C.H.</creatorcontrib><title>The Asymptotic Existence of Resolvable Group Divisible Designs</title><title>Journal of combinatorial designs</title><addtitle>J Combin Designs</addtitle><description>A group divisible design (GDD) is a triple (X,G,B) which satisfies the following properties: (1) G is a partition of X into subsets called groups; (2) B is a collection of subsets of X, called blocks, such that a group and a block contain at most one element in common; and (3) every pair of elements from distinct groups occurs in a constant number λ blocks. This parameter λ is usually called the index. A k‐GDD of type gu is a GDD with block size k, index λ=1, and u groups of size g. A GDD is resolvable if the blocks can be partitioned into classes such that each point occurs in precisely one block of each class. We denote such a design as an RGDD. For fixed integers g≥1 and k≥2, we show that the necessary conditions for the existence of a k‐RGDD of type gu are sufficient for all u≥u0(g,k). As a corollary of this result and the existence of large resolvable graph decompositions, we establish the asymptotic existence of resolvable graph GDDs, G‐RGDDs, whenever the necessary conditions for the existence of (v,G,1)‐RGDs are met. We also show that, with a few easy modifications, the techniques extend to general index. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21: 112–126, 2013</description><subject>frame design</subject><subject>graph decomposition</subject><subject>group divisible design</subject><subject>resolvable design</subject><subject>Studies</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUgIMoOKcH_0HBk4duL0mTtBdhdHMqQ2FMBS-hTRPN7NaZdHP793ZWvXnKC3zfe_AhdI6hhwFIf66KHsEUswPUwYxAyDmGw2YGTsOY0eQYnXg_B4AkobyDrmZvOhj43WJVV7VVwWhrfa2XSgeVCabaV-Umy0sdjF21XgVDu7He7v9D7e3r0p-iI5OVXp_9vF30eD2apTfh5GF8mw4moaICWMhIwU0hgOokNrHhkTAEC1aAUEpDhHWsKc3ypIhoDpxFOaZGkSxjmIo44px20UW7d-Wqj7X2tZxXa7dsTkpMCU4i0WgNddlSylXeO23kytlF5nYSg9znkU0e-Z2nYfst-2lLvfsflHfp8NcIW2NfaPtnZO5dckEFk8_3Y5k-TYlg4kUS-gU-DnOr</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Chan, Justin H.</creator><creator>Dukes, Peter J.</creator><creator>Lamken, Esther R.</creator><creator>Ling, Alan C.H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201303</creationdate><title>The Asymptotic Existence of Resolvable Group Divisible Designs</title><author>Chan, Justin H. ; Dukes, Peter J. ; Lamken, Esther R. ; Ling, Alan C.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>frame design</topic><topic>graph decomposition</topic><topic>group divisible design</topic><topic>resolvable design</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Justin H.</creatorcontrib><creatorcontrib>Dukes, Peter J.</creatorcontrib><creatorcontrib>Lamken, Esther R.</creatorcontrib><creatorcontrib>Ling, Alan C.H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Justin H.</au><au>Dukes, Peter J.</au><au>Lamken, Esther R.</au><au>Ling, Alan C.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Asymptotic Existence of Resolvable Group Divisible Designs</atitle><jtitle>Journal of combinatorial designs</jtitle><addtitle>J Combin Designs</addtitle><date>2013-03</date><risdate>2013</risdate><volume>21</volume><issue>3</issue><spage>112</spage><epage>126</epage><pages>112-126</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><coden>JDESEU</coden><abstract>A group divisible design (GDD) is a triple (X,G,B) which satisfies the following properties: (1) G is a partition of X into subsets called groups; (2) B is a collection of subsets of X, called blocks, such that a group and a block contain at most one element in common; and (3) every pair of elements from distinct groups occurs in a constant number λ blocks. This parameter λ is usually called the index. A k‐GDD of type gu is a GDD with block size k, index λ=1, and u groups of size g. A GDD is resolvable if the blocks can be partitioned into classes such that each point occurs in precisely one block of each class. We denote such a design as an RGDD. For fixed integers g≥1 and k≥2, we show that the necessary conditions for the existence of a k‐RGDD of type gu are sufficient for all u≥u0(g,k). As a corollary of this result and the existence of large resolvable graph decompositions, we establish the asymptotic existence of resolvable graph GDDs, G‐RGDDs, whenever the necessary conditions for the existence of (v,G,1)‐RGDs are met. We also show that, with a few easy modifications, the techniques extend to general index. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21: 112–126, 2013</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jcd.21315</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2013-03, Vol.21 (3), p.112-126
issn 1063-8539
1520-6610
language eng
recordid cdi_proquest_journals_1321947065
source Wiley
subjects frame design
graph decomposition
group divisible design
resolvable design
Studies
title The Asymptotic Existence of Resolvable Group Divisible Designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Asymptotic%20Existence%20of%20Resolvable%20Group%20Divisible%20Designs&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Chan,%20Justin%20H.&rft.date=2013-03&rft.volume=21&rft.issue=3&rft.spage=112&rft.epage=126&rft.pages=112-126&rft.issn=1063-8539&rft.eissn=1520-6610&rft.coden=JDESEU&rft_id=info:doi/10.1002/jcd.21315&rft_dat=%3Cproquest_cross%3E2932429561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3705-52d6fd703e98f8f647f2175d07cce041e8e33ab9d43b0654b13fc2aa513784663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1321947065&rft_id=info:pmid/&rfr_iscdi=true