Loading…

Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments

Social scientists are often interested in testing multiple causal mechanisms through which a treatment affects outcomes. A predominant approach has been to use linear structural equation models and examine the statistical significance of the corresponding path coefficients. However, this approach im...

Full description

Saved in:
Bibliographic Details
Published in:Political analysis 2013, Vol.21 (2), p.141-171
Main Authors: Imai, Kosuke, Yamamoto, Teppei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53
cites cdi_FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53
container_end_page 171
container_issue 2
container_start_page 141
container_title Political analysis
container_volume 21
creator Imai, Kosuke
Yamamoto, Teppei
description Social scientists are often interested in testing multiple causal mechanisms through which a treatment affects outcomes. A predominant approach has been to use linear structural equation models and examine the statistical significance of the corresponding path coefficients. However, this approach implicitly assumes that the multiple mechanisms are causally independent of one another. In this article, we consider a set of alternative assumptions that are sufficient to identify the average causal mediation effects when multiple, causally related mediators exist. We develop a new sensitivity analysis for examining the robustness of empirical findings to the potential violation of a key identification assumption. We apply the proposed methods to three political psychology experiments, which examine alternative causal pathways between media framing and public opinion. Our analysis reveals that the validity of original conclusions is highly reliant on the assumed independence of alternative causal mechanisms, highlighting the importance of proposed sensitivity analysis. All of the proposed methods can be implemented via an open source R package, mediation.
doi_str_mv 10.1093/pan/mps040
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1322998162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mps040</cupid><jstor_id>24572652</jstor_id><sourcerecordid>24572652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKsX70LAm7g2yWZ3E2-ltFpoEfw4L9lsUlP2yyRb7L83dUUETzMMT56ZvABcYnSHEY8nnWgmdecQRUdghGmWRpQzfhx6RLMIc5adgjPntgjhLON8BPyyVI032kjhTdtA0ZTwRTXOeLMzfg-njaj2zjioWwvXfeVNVyk4E70TFVwr-S4a42p3D5_VzhxeNRs435kglQpq29ZwYUX9Pf3slDV12ObOwYkWlVMXP3UM3hbz19ljtHp6WM6mq0hSgnxUqJgVaco1ZanUhBSCI03TRDGehS4mmMpYa44YTmghCy2koDjOMEtUScskHoPrwdvZ9qNXzufbtrfhRy7HMSGcM5ySQN0MlLStc1bpvAt3CrvPMcoPqeYh1XxINcBXA7x1vrW_JKFJRtLkILv9kYm6sKbcqD87_-u-AClbhpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322998162</pqid></control><display><type>article</type><title>Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments</title><source>Cambridge Journals Online</source><source>Worldwide Political Science Abstracts</source><source>JSTOR</source><creator>Imai, Kosuke ; Yamamoto, Teppei</creator><creatorcontrib>Imai, Kosuke ; Yamamoto, Teppei</creatorcontrib><description>Social scientists are often interested in testing multiple causal mechanisms through which a treatment affects outcomes. A predominant approach has been to use linear structural equation models and examine the statistical significance of the corresponding path coefficients. However, this approach implicitly assumes that the multiple mechanisms are causally independent of one another. In this article, we consider a set of alternative assumptions that are sufficient to identify the average causal mediation effects when multiple, causally related mediators exist. We develop a new sensitivity analysis for examining the robustness of empirical findings to the potential violation of a key identification assumption. We apply the proposed methods to three political psychology experiments, which examine alternative causal pathways between media framing and public opinion. Our analysis reveals that the validity of original conclusions is highly reliant on the assumed independence of alternative causal mechanisms, highlighting the importance of proposed sensitivity analysis. All of the proposed methods can be implemented via an open source R package, mediation.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mps040</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Analytical estimating ; Coefficients ; Confidence interval ; Experiment design ; Experiments ; Framing effects ; Freedom of speech ; Logical givens ; Political science ; Pretreatment ; Public opinion ; Sensitivity analysis ; Social sciences ; Statistical mechanics</subject><ispartof>Political analysis, 2013, Vol.21 (2), p.141-171</ispartof><rights>Copyright © The Author 2013. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>2013 The Society for Political Methodology</rights><rights>Copyright Oxford Publishing Limited(England) Spring 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53</citedby><cites>FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24572652$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700013334/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471,72832</link.rule.ids></links><search><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Yamamoto, Teppei</creatorcontrib><title>Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>Social scientists are often interested in testing multiple causal mechanisms through which a treatment affects outcomes. A predominant approach has been to use linear structural equation models and examine the statistical significance of the corresponding path coefficients. However, this approach implicitly assumes that the multiple mechanisms are causally independent of one another. In this article, we consider a set of alternative assumptions that are sufficient to identify the average causal mediation effects when multiple, causally related mediators exist. We develop a new sensitivity analysis for examining the robustness of empirical findings to the potential violation of a key identification assumption. We apply the proposed methods to three political psychology experiments, which examine alternative causal pathways between media framing and public opinion. Our analysis reveals that the validity of original conclusions is highly reliant on the assumed independence of alternative causal mechanisms, highlighting the importance of proposed sensitivity analysis. All of the proposed methods can be implemented via an open source R package, mediation.</description><subject>Analytical estimating</subject><subject>Coefficients</subject><subject>Confidence interval</subject><subject>Experiment design</subject><subject>Experiments</subject><subject>Framing effects</subject><subject>Freedom of speech</subject><subject>Logical givens</subject><subject>Political science</subject><subject>Pretreatment</subject><subject>Public opinion</subject><subject>Sensitivity analysis</subject><subject>Social sciences</subject><subject>Statistical mechanics</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNplkE1LAzEQhoMoWKsX70LAm7g2yWZ3E2-ltFpoEfw4L9lsUlP2yyRb7L83dUUETzMMT56ZvABcYnSHEY8nnWgmdecQRUdghGmWRpQzfhx6RLMIc5adgjPntgjhLON8BPyyVI032kjhTdtA0ZTwRTXOeLMzfg-njaj2zjioWwvXfeVNVyk4E70TFVwr-S4a42p3D5_VzhxeNRs435kglQpq29ZwYUX9Pf3slDV12ObOwYkWlVMXP3UM3hbz19ljtHp6WM6mq0hSgnxUqJgVaco1ZanUhBSCI03TRDGehS4mmMpYa44YTmghCy2koDjOMEtUScskHoPrwdvZ9qNXzufbtrfhRy7HMSGcM5ySQN0MlLStc1bpvAt3CrvPMcoPqeYh1XxINcBXA7x1vrW_JKFJRtLkILv9kYm6sKbcqD87_-u-AClbhpg</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Imai, Kosuke</creator><creator>Yamamoto, Teppei</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>2013</creationdate><title>Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments</title><author>Imai, Kosuke ; Yamamoto, Teppei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical estimating</topic><topic>Coefficients</topic><topic>Confidence interval</topic><topic>Experiment design</topic><topic>Experiments</topic><topic>Framing effects</topic><topic>Freedom of speech</topic><topic>Logical givens</topic><topic>Political science</topic><topic>Pretreatment</topic><topic>Public opinion</topic><topic>Sensitivity analysis</topic><topic>Social sciences</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Yamamoto, Teppei</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Kosuke</au><au>Yamamoto, Teppei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>2</issue><spage>141</spage><epage>171</epage><pages>141-171</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Social scientists are often interested in testing multiple causal mechanisms through which a treatment affects outcomes. A predominant approach has been to use linear structural equation models and examine the statistical significance of the corresponding path coefficients. However, this approach implicitly assumes that the multiple mechanisms are causally independent of one another. In this article, we consider a set of alternative assumptions that are sufficient to identify the average causal mediation effects when multiple, causally related mediators exist. We develop a new sensitivity analysis for examining the robustness of empirical findings to the potential violation of a key identification assumption. We apply the proposed methods to three political psychology experiments, which examine alternative causal pathways between media framing and public opinion. Our analysis reveals that the validity of original conclusions is highly reliant on the assumed independence of alternative causal mechanisms, highlighting the importance of proposed sensitivity analysis. All of the proposed methods can be implemented via an open source R package, mediation.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mps040</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2013, Vol.21 (2), p.141-171
issn 1047-1987
1476-4989
language eng
recordid cdi_proquest_journals_1322998162
source Cambridge Journals Online; Worldwide Political Science Abstracts; JSTOR
subjects Analytical estimating
Coefficients
Confidence interval
Experiment design
Experiments
Framing effects
Freedom of speech
Logical givens
Political science
Pretreatment
Public opinion
Sensitivity analysis
Social sciences
Statistical mechanics
title Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Sensitivity%20Analysis%20for%20Multiple%20Causal%20Mechanisms:%20Revisiting%20Evidence%20from%20Framing%20Experiments&rft.jtitle=Political%20analysis&rft.au=Imai,%20Kosuke&rft.date=2013&rft.volume=21&rft.issue=2&rft.spage=141&rft.epage=171&rft.pages=141-171&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mps040&rft_dat=%3Cjstor_proqu%3E24572652%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-be38b669f486cf22ba90f465e89790f3214c3ff908154bcbfaca4137185ed4d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1322998162&rft_id=info:pmid/&rft_cupid=10_1093_pan_mps040&rft_jstor_id=24572652&rfr_iscdi=true