Loading…

Diffusion Flame Calculations for Composite Propellants Using a Vorticity-Velocity Formulation

A two-dimensional model has been developed to study the flame structure above composite propellants using a vorticity-velocity formulation of the transport equations. This formulation allows for a more stable, robust, accurate, and faster solution method compared with the compressible Navier-Stokes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of propulsion and power 2009-01, Vol.25 (1), p.74-82
Main Authors: Gross, Matthew L, Beckstead, Merrill W
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93
cites cdi_FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93
container_end_page 82
container_issue 1
container_start_page 74
container_title Journal of propulsion and power
container_volume 25
creator Gross, Matthew L
Beckstead, Merrill W
description A two-dimensional model has been developed to study the flame structure above composite propellants using a vorticity-velocity formulation of the transport equations. This formulation allows for a more stable, robust, accurate, and faster solution method compared with the compressible Navier-Stokes equations in the low Mach flow regime. The model includes mass and energy coupling between the condensed and gas phases. The condensed-phase model is based on previously reported one-dimensional models and includes distributed decomposition and multistep-reaction kinetics. The model uses a detailed gas-phase kinetic mechanism consisting of 37 species and 127 reactions. The kinetic mechanism and species diffusion determine the flame structure of the system; no assumptions are made beforehand, aside from appropriate boundary conditions. Numerical studies have been performed to examine the flame structure above an ammonium-perchlorate/hydroxy-terminated-polybutadiene propellant. The predicted flame structure was found to be qualitatively similar to the Beckstead-Derr-Price model with both premixed and diffusion flames present. Results present significant insight into ammonium perchlorate's ability to control a propellant's burning rate and illustrate the importance of the primary diffusion flame in composite propellant combustion. [PUBLISHER ABSTRACT]
doi_str_mv 10.2514/1.36360
format article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_1346154381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954884651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93</originalsourceid><addsrcrecordid>eNpt0E1LxDAQBuAgCq6r-BcCiuKhaz6atjlKdVVY0IO7NwlpmkqWdFOTFNx_b_fjIOopk5mHl2EAOMdoQhhOb_GEZjRDB2CEGaUJLfLsEIxQnhZJmrHiGJyEsEQIZ0WWj8D7vWmaPhi3glMrWw1LaVVvZRw6ATbOw9K1nQsmavjqXaetlasY4DyY1QeUcOF8NMrEdbLQ1m0KOHW-3SecgqNG2qDP9u8YzKcPb-VTMnt5fC7vZomkaR4TIjmtVcYLVsu6qomqCNIoxSxXVHGWI6xYxRmVRJGa8-Ertaw4L1BF0qLhdAyudrmdd5-9DlG0Jqjtrtr1QVBG04yQfIAXv-DS9X417CbwQDBLaYEHdb1TyrsQvG5E500r_VpgJDZHFlhsjzzIy52URsofWX_Yzb9sNxZd3Yimtzbqr0i_Ab9UiKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346154381</pqid></control><display><type>article</type><title>Diffusion Flame Calculations for Composite Propellants Using a Vorticity-Velocity Formulation</title><source>Alma/SFX Local Collection</source><creator>Gross, Matthew L ; Beckstead, Merrill W</creator><creatorcontrib>Gross, Matthew L ; Beckstead, Merrill W</creatorcontrib><description>A two-dimensional model has been developed to study the flame structure above composite propellants using a vorticity-velocity formulation of the transport equations. This formulation allows for a more stable, robust, accurate, and faster solution method compared with the compressible Navier-Stokes equations in the low Mach flow regime. The model includes mass and energy coupling between the condensed and gas phases. The condensed-phase model is based on previously reported one-dimensional models and includes distributed decomposition and multistep-reaction kinetics. The model uses a detailed gas-phase kinetic mechanism consisting of 37 species and 127 reactions. The kinetic mechanism and species diffusion determine the flame structure of the system; no assumptions are made beforehand, aside from appropriate boundary conditions. Numerical studies have been performed to examine the flame structure above an ammonium-perchlorate/hydroxy-terminated-polybutadiene propellant. The predicted flame structure was found to be qualitatively similar to the Beckstead-Derr-Price model with both premixed and diffusion flames present. Results present significant insight into ammonium perchlorate's ability to control a propellant's burning rate and illustrate the importance of the primary diffusion flame in composite propellant combustion. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.36360</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><ispartof>Journal of propulsion and power, 2009-01, Vol.25 (1), p.74-82</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Jan-Feb 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93</citedby><cites>FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gross, Matthew L</creatorcontrib><creatorcontrib>Beckstead, Merrill W</creatorcontrib><title>Diffusion Flame Calculations for Composite Propellants Using a Vorticity-Velocity Formulation</title><title>Journal of propulsion and power</title><description>A two-dimensional model has been developed to study the flame structure above composite propellants using a vorticity-velocity formulation of the transport equations. This formulation allows for a more stable, robust, accurate, and faster solution method compared with the compressible Navier-Stokes equations in the low Mach flow regime. The model includes mass and energy coupling between the condensed and gas phases. The condensed-phase model is based on previously reported one-dimensional models and includes distributed decomposition and multistep-reaction kinetics. The model uses a detailed gas-phase kinetic mechanism consisting of 37 species and 127 reactions. The kinetic mechanism and species diffusion determine the flame structure of the system; no assumptions are made beforehand, aside from appropriate boundary conditions. Numerical studies have been performed to examine the flame structure above an ammonium-perchlorate/hydroxy-terminated-polybutadiene propellant. The predicted flame structure was found to be qualitatively similar to the Beckstead-Derr-Price model with both premixed and diffusion flames present. Results present significant insight into ammonium perchlorate's ability to control a propellant's burning rate and illustrate the importance of the primary diffusion flame in composite propellant combustion. [PUBLISHER ABSTRACT]</description><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LxDAQBuAgCq6r-BcCiuKhaz6atjlKdVVY0IO7NwlpmkqWdFOTFNx_b_fjIOopk5mHl2EAOMdoQhhOb_GEZjRDB2CEGaUJLfLsEIxQnhZJmrHiGJyEsEQIZ0WWj8D7vWmaPhi3glMrWw1LaVVvZRw6ATbOw9K1nQsmavjqXaetlasY4DyY1QeUcOF8NMrEdbLQ1m0KOHW-3SecgqNG2qDP9u8YzKcPb-VTMnt5fC7vZomkaR4TIjmtVcYLVsu6qomqCNIoxSxXVHGWI6xYxRmVRJGa8-Ertaw4L1BF0qLhdAyudrmdd5-9DlG0Jqjtrtr1QVBG04yQfIAXv-DS9X417CbwQDBLaYEHdb1TyrsQvG5E500r_VpgJDZHFlhsjzzIy52URsofWX_Yzb9sNxZd3Yimtzbqr0i_Ab9UiKc</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Gross, Matthew L</creator><creator>Beckstead, Merrill W</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200901</creationdate><title>Diffusion Flame Calculations for Composite Propellants Using a Vorticity-Velocity Formulation</title><author>Gross, Matthew L ; Beckstead, Merrill W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gross, Matthew L</creatorcontrib><creatorcontrib>Beckstead, Merrill W</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gross, Matthew L</au><au>Beckstead, Merrill W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Flame Calculations for Composite Propellants Using a Vorticity-Velocity Formulation</atitle><jtitle>Journal of propulsion and power</jtitle><date>2009-01</date><risdate>2009</risdate><volume>25</volume><issue>1</issue><spage>74</spage><epage>82</epage><pages>74-82</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>A two-dimensional model has been developed to study the flame structure above composite propellants using a vorticity-velocity formulation of the transport equations. This formulation allows for a more stable, robust, accurate, and faster solution method compared with the compressible Navier-Stokes equations in the low Mach flow regime. The model includes mass and energy coupling between the condensed and gas phases. The condensed-phase model is based on previously reported one-dimensional models and includes distributed decomposition and multistep-reaction kinetics. The model uses a detailed gas-phase kinetic mechanism consisting of 37 species and 127 reactions. The kinetic mechanism and species diffusion determine the flame structure of the system; no assumptions are made beforehand, aside from appropriate boundary conditions. Numerical studies have been performed to examine the flame structure above an ammonium-perchlorate/hydroxy-terminated-polybutadiene propellant. The predicted flame structure was found to be qualitatively similar to the Beckstead-Derr-Price model with both premixed and diffusion flames present. Results present significant insight into ammonium perchlorate's ability to control a propellant's burning rate and illustrate the importance of the primary diffusion flame in composite propellant combustion. [PUBLISHER ABSTRACT]</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.36360</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2009-01, Vol.25 (1), p.74-82
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_1346154381
source Alma/SFX Local Collection
title Diffusion Flame Calculations for Composite Propellants Using a Vorticity-Velocity Formulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Flame%20Calculations%20for%20Composite%20Propellants%20Using%20a%20Vorticity-Velocity%20Formulation&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Gross,%20Matthew%20L&rft.date=2009-01&rft.volume=25&rft.issue=1&rft.spage=74&rft.epage=82&rft.pages=74-82&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.36360&rft_dat=%3Cproquest_aiaa_%3E2954884651%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a347t-2a93dc6985dadbd2cb20e04157c3c95701c5b953a2c2d9901caeab9980b248f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1346154381&rft_id=info:pmid/&rfr_iscdi=true